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AUGMENTING HUMAN MOTOR CAPACITIES
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A TAXONOMY OF MOVEMENT AUGMENTATION

2

Power augmentation to
increase the exertable
forces or movement speed

Workstation augmentation
to extend the spacial reach
of natural limbs

Precision augmentation
increases the control
precision and task
performance

Degrees-of-freedom augmentation
increases the number of DoFs enabling
users to perform more complex tasks than
with the naural DoFs alone

Task

Autonomous

Whole-body



APPLICATIONS
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Medical Interventions
Use of computers/mobile
devices
Paralysed patients with
residual movement
abilities
Day-to-day activities e.g.
playing an instrument



BIONICS
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BIONIC HANDS AND ARMS IN PRINCIPLE CAN BE
STRONGER ,  FASTER  AND CAN SENSE  WITH HIGHER

ACCURACY THAN BIOLOGICAL ONES
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Open Bionics Hero Arm
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THE GAP BETWEEN AUTONOMOUS  ROBOTS AND
HUMAN-INTERFACED  ROBOTS
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CREATING AN INTERFACE  AND
REPLACING THE BIOLOGICAL HAND

7



BIOLOGICALLY INSPIRED ARTIFICIAL
CLASSIFIER NETWORK
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METHODOLOGY:
DATA COLLECTION

Overview :  The study examined neural input modulations
during movement cancellation using a “GO/NO-GO” task.

Participants :  12 male subjects (ages 21–38); ethical
approval and consent obtained.

Setup :  EEG (31 electrodes) and high-density EMG (64
channels) recorded from the t ibial is anterior muscle.
Participants performed isometric ankle dorsif lexion at
10% MVC.

Task :  In “GO” tr ials,  a bal l ist ic contraction was
performed. In “NO-GO” tr ials,  force was maintained at
10% MVC. Each block had 35 tr ials,  with f ixed t iming for
auditory cues.
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[2]

Zicher, B., et al. (2024). Journal of Neural Engineering, 21(056039).
https://doi.org/10.1088/1741-2552/ad8835



GO/NO-GO EXPERIMENT PARADIGM
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FUNCTIONAL STATES
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METHODOLOGY: DATA PREPROCESSING

S e g m e n t  d a t a

S e l e c t  N O - G O  r e g i o n s
E x t r a c t  B a s e l i n e ,
P r e p a r a t i o n  a n d

C a n c e l l a t i o n  w i n d o w s

S h a p e :  P a r t i c i p a n t ,  C l a s s ,
n o .  o f  t r i a l s ,  s a m p l e s ,

c h a n n e l s
( 7 ,  3 ,  X ,  2 0 4 8 ,  6 4 )

INITIAL PIPELINE
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PRINCIPAL COMPONENT ANALYSIS

PCA
Reduc t i on

6 4  C h a n n e l
E M G  t o  1 6  P C A

C o m p o n e n t s
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METHODOLOGY: DATA PREPROCESSING
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FILTERING AND
NORMALISATION

A m p l i t u d e  n o r m a l i s a t i o n  p e r  t r i a l
Z - s c o r e  n o r m a l i z s a t i o n
D a t a  a u g m e n t a t i o n  ( j i t t e r i n g ,  s l i g h t
a u g m e n t a t i o n s  t o  f r e q u e n c y  f i l t e r i n g )

P C A
R e d u c t i o n

B e t a  B a n d
B a n d p a s s
F i l t e r i n g

( 1 3 - 3 0 H z )
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METHODOLOGY: 
CLASSIFIER
NETWORK
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2-Class  Average Accuracy:  72.4%
3-Class  Average Accuracy:  49 .6% 19

INITIAL RESULTS: ACCURACY



2-Class  Average Loss :  0.532
3-Class  Average Loss :  0 .900

INITIAL RESULTS: LOSS
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ANALYSIS: GRADCAM

Gradient-weighted Class Activation Mapping (GradCAM)
is a visualization technique used to understand and
interpret the decisions made by convolutional neural
networks (CNNs). 

GradCAM highlights the regions in the input data that are
most influential in predicting a particular class, providing
insights into the model's decision-making process.

GradCAM works by computing the gradient of the
predicted class score with respect to the activations of a
convolutional layer. These gradients are then weighted by
the average gradient across the spatial dimensions.
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ANALYSIS:
GRADCAM
Gradient  Heatmap
Visua l izat ion
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CURRENT ADJUSMENTS
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Leverage Temporal Context
 • Use the fact that the preparation class is always followed by cancellation.
 • Explore merging “Preparation” and “Cancellation” classes into a single class.
 • Perform comparisons:
 • Cancellation vs Baseline
 • Baseline vs Preparation + Cancellation
 • Introduce a sliding window approach to capture dynamic changes.

Alternative Input Configurations
 • Use all 64 channels directly as classifier input (bypass PCA).
 • Calculate the mean of the square of the 64 channels as input instead of all individual
channels.
 • Evaluate classifier performance with and without PCA applied to the full set of 64 channels.
 • Try calculating PCA across all trials collectively instead of per trial.

Ablation Studies
 • Conduct stepwise ablations of preprocessing steps (e.g., filtering, normalization).
 • Measure and compare classifier performance after removing or modifying specific steps.
 • Present findings in a key or matrix format for clarity.

Alternative Techniques
 • Apply KL Transform or Maximum Relevance Minimum Redundancy (mRMR) to evaluate
feature selection efficacy.
 • Compare results of KL Transform and mRMR techniques against PCA.



CLASSIFIER NETWORK: KEY  CLASSES

24



Tempora l  Ana lys is
wi th  S l id ing
Window -  Overview

ANALYSIS:
SLIDING
WINDOW
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ANALYSIS:
SLIDING
WINDOW

Tempora l  Ana lys is
wi th  S l id ing  Window -
D e t a i l e d  v i e w
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CONCLUSION
REVIEW 1

Our preliminary results have successfully
demonstrated the feasibility of decoding central
nervous system (CNS) activity using non-invasive
electromyography (EMG) recordings. 
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IMPLICATIONS 2
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implications for various fields, including
rehabilitation, prosthetics, and the broader field of
neurotechnology, offering new insights into neural
control mechanisms and paving the way for
innovative human-machine interfaces (HMIs).
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FUTURE WORK 3
I will focus on refining the AI model to enhance
its accuracy and robustness. To build on our
current results, I will devise specific experiments
aimed at exploiting the full potential of EMG-
based CNS decoding for HMI advancements in
Real Time scenarios.
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