There Is No Band

Double Categories, Fragmented Spacetime, and an AQFT

Khyathi Komalan California Institute of Technology Topos Oxford Seminar, 2025

Contents/Structure of the Talk

- Constructing the Double Category Mink
- Constructing the Double Category vNA
- The Functor $F: Mink \rightarrow vNA$
- Gluing in our AQFT
- Locality in our AQFT
- Summary
- Future Work
- References

Most constructions are paired with a scene from Mulholland Drive to illuminate the idea

There Was An Accident

3 / 62

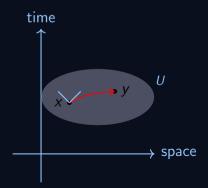
Fragments of a Theory

- We never observe all of spacetime.
- Like the woman, we wake up inside a fragment a patch of reality with no access to the global picture.
- A physical theory must work locally assigning structure to small, coherent regions.
- Ideally, we should be able to compose them, this means different such fragments can exist without contradiction.
- In our own "local space" or "fragment" we have our own ideas of morality, survival instinct, sense of time, etc.

Waking Up with Amnesia at a Stranger's Apartment

Objects: Causally Convex Regions

- Rita hides in the apartment. No signal escapes. No memory enters.
- We want regions like that: causally sealed fragments of spacetime.
- A region $U \subset \mathbb{R}^{1,1}$ is causally convex if:
 - For all $x, y \in U$, every causal curve from x to y lies entirely in U.
- These will be the objects in our double category Mink.

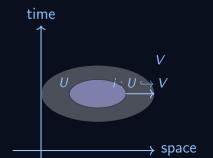


Betty Steps In

7 / 62

Vertical Morphisms: Looking Beyond the Fragment

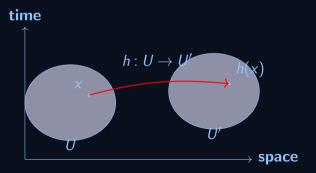
- Rita's life in her apartment sits inside bigger things Betty's life, the city, the storyline, etc.
- This embedding is modelled by an inclusion of regions
- A vertical morphism in Mink is a map $i: U \hookrightarrow V$ between causally convex open subsets.
- Inclusions preserve causal structure and allow us to zoom out.



From Fragments to Flow

Horizontal Morphisms: Causal Flow Across Fragments

- Like Betty and Rita leaving the apartment and interacting with each other, causal flow connects fragments without containment.
- A causal map $h: U \to U'$ satisfies $x \le y \Rightarrow h(x) \le h(y)$.
- These are the horizontal morphisms of our double category time-respecting relations between regions.



Winkie's Diner

1 / 62

Squares (2-morphisms): Two Paths to Terror

$$U\left(\text{dream/fear}\right) \xrightarrow{h: \text{dream evolves}} U'\left(\text{imagination/threat}\right)$$

$$i: \text{inclusion}$$

$$V\left(\text{at winkie's diner}\right) \xrightarrow[k: \text{surroundings evolve}]{} V'\left(\text{figure appears at winkie's allege}\right)$$

Our Double Category Mink

- Objects: causally convex regions
- Vertical Morphisms: inclusions of regions
- Horizontal Morphisms: causal map across regions
- Squares: commuting diagrams of inclusions and causal maps

Mr. Roque

Objects: von Neumann Algebras

- In **vNA**, objects are von Neumann algebras $\mathcal{M} \subseteq \mathcal{B}(H)$.
- They encode all observables for a given spacetime region.
- Like Mr. Roque's phone network: every possible "line" of action or measurement in his domain runs through a single, closed system.
- Complete, closed under composition, and the sole control hub for that fragment of reality.
- In our setting, these will often be *factors*, representing indivisible decision-making contexts with trivial center $Z(\mathcal{M}) = \mathbb{C} \cdot 1$.

Castigliane Brothers

Horizontal Morphisms: Hilbert Bimodules

- In **vNA**, horizontal morphisms are *Hilbert* $\mathcal{M}-\mathcal{N}$ bimodules.
- A Hilbert space H with commuting normal *-representations: $\pi_L : \mathcal{M} \to \mathcal{B}(H), \ \pi_R : \mathcal{N}^{op} \to \mathcal{B}(H).$
- They "translate" between two algebras, implementing transformations while respecting both left and right actions.
- A forced recasting bridges Adam's vision (left action) and the imposed image (right action), preserving the film's structure but changing its representation.
- Just as a bimodule must respect both source and target algebras,
 Adam must now work within both his original framework and the brothers' imposed choice.

Mr. Roque Talking to Mr. Ray

Vertical Morphisms: Normal Unital *-Homos

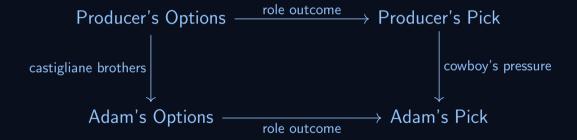
- In **vNA**, vertical morphisms are *normal unital* *-homomorphisms $\phi : \mathcal{M} \to \mathcal{N}$.
- *-homomorphism: preserves multiplication and adjoints: $\phi(ab) = \phi(a)\phi(b), \quad \phi(a^*) = \phi(a)^*.$
- Unital: $\phi(\mathbf{1}_{\mathscr{M}}) = \mathbf{1}_{\mathscr{N}}$.
- Normal: continuous in the ultraweak topology; preserves suprema of increasing nets of projections.
- Roque's instructions to Ray pass intact structure, identity, and all operational rules remain unchanged.

The Cowboy

Squares (2-morphisms): Intertwiners

- The Cowboy enforces "This is the girl" no matter if the role is locked before or after his pressure, the result is identical.
- In **vNA**, squares are *intertwiners* between Hilbert bimodules, ensuring two paths of action coincide.
- An intertwiner $T: E \to F$ satisfies $T(\pi_L(a) \xi \pi_R(b)) = \pi'_L(a) T(\xi) \pi'_R(b)$ for all a, b.
- Here: "Cowboy pressure then lock" = "lock then Cowboy pressure"
 both yield the same casting outcome.

Cowboy Scene: Intertwiner



Confusion at Winkie's Diner

Vertical Composition: Diagram

- $\mathcal{M} = \text{knowledge algebra before the name "Diane" appears}$
- $m{\phi} = ext{processing the nametag clue}$
- ${\cal N}={\sf knowledge}$ algebra including the name "Diane Selwyn" as a hypothesis
- $\psi =$ decision to check the phonebook
- $\mathscr{P} = \overline{\mathsf{knowledge}}$ algebra with the address to visit

Vertical Composition: Composing *-Homos

- Rita suspects she might be "Diane", leading to address lookup, then visit to her apartment.
- Each step is a normal unital *-homomorphism within the same spacetime region/algebraic context.
- Vertical composition = chaining these maps: $(\psi \circ \phi)$: $\mathcal{M} \to \mathcal{P}$, preserving multiplication, adjoints, the unit, and normality.
- Narratively: suspicion \to name \to address \to apartment each refines the prior state without leaving the original regional context.

Vertical Composition: Normal and Unital

- **Unital:** The "unit" (baseline facts + ultimate goal of uncovering Rita's identity) remains fixed across all knowledge states.
- Refining from nametag \rightarrow phonebook \rightarrow address never changes what we are trying to solve.
- **Normal:** Updates respect limits of increasing information assembling partial clues leads smoothly to the final state.
- Smaller observations about Diane (name tag, address hints) accumulate without breaking the logic of the search.

Arriving at "Diane"'s Apartment

Horizontal Composition: Diagram

- C: vNA for public knowledge at Winkie's.
- A: vNA for the address info.
- B: vNA for Diane's apartment.

$$\begin{array}{c}
C & \xrightarrow{\text{phonebook}} A & \xrightarrow{\text{travelling}} B \\
\hline
& & \text{connes fusion over A} \\
C & \xrightarrow{\text{phonebook-to-door}} B
\end{array}$$

Horizontal Composition: Connes Fusion

- Waiter clue \rightarrow address \rightarrow Diane's door two influence paths merge.
- Horizontal 1-cells: Hilbert bimodules $_{\mathscr{C}}E_{\mathscr{A}}$ and $_{\mathscr{A}}F_{\mathscr{B}}$.
- **Fusion:** $E \boxtimes_{\mathscr{A}} F$ balances over \mathscr{A} and completes to a Hilbert \mathscr{C} − \mathscr{B} bimodule.
- **Meaning:** Two cross-context channels become one, preserving left $\mathscr C$ and right $\mathscr B$ actions.

Our Double Category **vNA**

- Objects: von Neumann Algebras (factors)
- Vertical Morphisms: normal unital *-homomorphisms
- Horizontal Morphisms: Hilbert bimodules
- Squares: Intertwiners
- Vertical Composition: composition of normal unital
 *-homomorphisms
- Horizontal Composition: connes fusion

There Is No Band

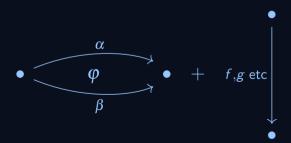
31 / 62

Club Silencio: Globularly Generated Double Cats

- We'll build double categories from the least data, then "project" to the real stage.
- Defins: decorated bicategory, internalization, globular generation, and the free lift.
- Then: why Mink and vNA fit this scheme.

Decorated Bicategory

- A pair $(\mathscr{B}^*,\mathscr{B})$ with the same objects.
- \mathscr{B}^* : a **category** of vertical arrows (no 2-cells).
- \mathcal{B} : a **bicategory** of horizontal 1-cells and 2-cells.
- Idea: list the objects, the "up/down" arrows, and the "left/right + 2-cells".



From a Double Category Back to Data

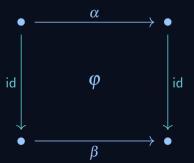
- Given a double category \mathscr{C} , its **decorated horizontalization** is $H^*\mathscr{C} = (\mathscr{C}_0, H\mathscr{C})$.
- \mathscr{C}_0 : objects + vertical arrows (forget squares).
- $H\mathscr{C}$: objects + horizontal 1-cells + their 2-cells (forget vertical composites).
- We "mic the band": keep tracks (data) but hide the stage machinery.

Internalization Problem

- Input: a decorated bicategory $(\mathscr{B}^*,\mathscr{B})$.
- Task: build a double category \mathscr{C} whose visible data is exactly that input: $H^*\mathscr{C} = (\mathscr{B}^*, \mathscr{B})$.
- Interpretation: can we realize the "recording" as a full "stage show"?

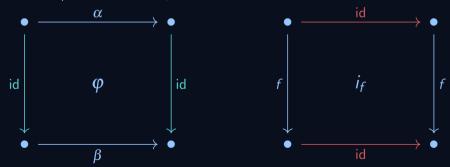
Globular Squares and Generation

- A globular square: vertical edges are identities; only horizontal data varies.
- ullet Notation: $\gamma\mathscr{C}=$ sub-double category generated by globular squares



Free Globularly Generated Double Category

- From $(\mathcal{B}^*, \mathcal{B})$ build $Q(\mathcal{B}^*, \mathcal{B})$: add only the squares *forced* by composition axioms.
- Universal: any realization $\mathscr C$ with $H^*\mathscr C=(\mathscr B^*,\mathscr B)$ receives a unique strict double functor from Q.
- Horizontal/vertical compositions of:



Mink as Globularly Generated

- \mathscr{B}^* : inclusions of causally convex regions (vertical).
- \mathcal{B} : causal, orientation-preserving embeddings; 2-cells = commuting squares.
- Every square factors into globular pieces (whisker by inclusions) and composes back.
- Thus Mink $\cong \gamma \mathscr{C}$ for its standard square-of-embeddings \mathscr{C} .

vNA (Factors) as Globularly Generated

- \mathscr{B}^* : normal unital *-homomorphisms (vertical).
- \mathscr{B} : Hilbert bimodules as 1-cells; intertwiners as 2-cells.
- Globular squares = intertwiners with identity verticals; whiskering by *-homs yields all squares.
- Free lift Q projects onto the standard "linear" double category (Connes fusion respected).

Silencio: No Band, Just a Projection

- Free track Q exists from minimal data $(\mathcal{B}^*, \mathcal{B})$.
- Your concrete stage $\mathscr C$ is a canonical projection of Q.
- All the "music" (squares) is synthesized from globular stems.

The Blue Box

41 / 62

The AQFT Double Functor

- The box = double functor F: Mink $\rightarrow \mathbf{vNA}$.
- Objects: $U \mapsto \mathscr{A}(U)$ (von Neumann algebra).
- Vertical: inclusions \mapsto normal unital *-homs.
- Horizontal: causal maps \mapsto Hilbert bimodules; compose via Connes fusion.
- 2-cells: squares \mapsto intertwiners, coherence via interchange.

Analogy: opening the box forces fragments (Mink pieces) to collapse into a single algebraic translation rule.

Inside the Box: An AQFT Net

- Isotony: $U \subset V \Rightarrow \mathscr{A}(U) \subset \mathscr{A}(V)$.
- **Locality:** spacelike $U, V \Rightarrow [\mathscr{A}(U), \mathscr{A}(V)] = 0$.
- Covariance: symmetries act by natural isomorphisms.
- **Time-slice:** if U contains a Cauchy surface for V, then $\mathscr{A}(U) = \mathscr{A}(V)$.

Analogy: opening the box doesn't reveal "reality" — it collapses the dream into a single, inevitable structure: the AQFT net.

Wake Up

44 / 62

Gluing in the Storyline

Fragment A

Cowboy (smile)
"Time to wake up"

match on shared anchor

Shared Anchor

doorway frame same line / room tone

match on shared anchor

Fragment B

Cowboy (unsmiling) door closes

↓ keep continuity across the joins

Glued Sequence

one coherent wake-up beat

Gluing in our AQFT

- **Data:** a net $A : \mathcal{O}(M) \rightarrow \mathbf{vNA}$ from $F : Mink \rightarrow \mathbf{vNA}$.
- Rule to keep: if $U \perp V \subset T$, then inside A(T) the images of A(U) and A(V) commute.

Recipe (3 steps):

- Match on overlaps (Čech compatibility).
- ² Enforce independence: [A(U), A(V)] = 0 for $U \perp V$.
- Take the universal algebra A(M) with 1–2.

$$A(M) \cong (\operatorname{\mathsf{colim}}_{\check{C}(U_{\alpha})} A) / \langle \langle \operatorname{\mathsf{overlap}} \ \operatorname{\mathsf{equalities}}, \ \operatorname{\mathsf{disjoint-commutation}} \rangle \rangle$$

(Cowboy "wake up": we don't just splice pieces; we enforce the rule wherever they meet.)

Gluing in our AQFT (Diagram)

Two patches: $M = U \cup V$, $W = U \cap V$

$$\begin{array}{ccc}
A(W) & \xrightarrow{i_U} & A(U) \\
\downarrow i_V & & \downarrow & P := A(U) \underset{A(W)}{*} A(V) \\
A(V) & \to & P
\end{array}$$

$$P \rightarrow A(U \cup V)$$
 impose $[A(U), A(V)] = 0$ if $U \perp V$

Universal:
$$\begin{cases} j_U : A(U) \to B, \ j_V : A(V) \to B, \\ j_U \circ i_U = j_V \circ i_V, \ [j_U(A(U)), j_V(A(V))] = 0 \end{cases} \Rightarrow \exists ! \ \phi : \boxed{A(U \cup V)} \to B.$$

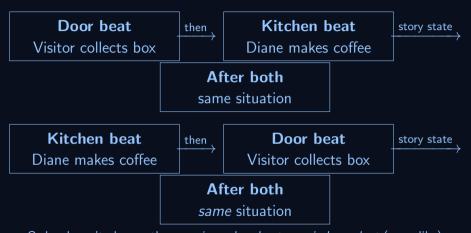
Read: (1) align on the overlap, (2) enforce "independent parts commute," (3) obtain the unique global algebra receiving all compatible, commuting maps.

The Neighbour

48 / 62

Diane Making Coffee

Locality in the Storyline



Order doesn't change the meaning when beats are independent (spacelike).

Locality in our AQFT

- **Assume:** $U \perp V \subset T$ (spacelike/disjoint inside T).
- Claim: inside A(T), the images of A(U) and A(V) commute.
- Model: F : Mink → vNA is a double functor.
- Vertical = inclusions \Rightarrow *-homs; horizontal = propagation as Hilbert bimodules (Connes fusion).
- Why: the interchange law makes the two pastings (apply U then V vs V then U) equal \Rightarrow commuting actions.

Locality in our AQFT (Diagram)

Fix elements
$$x \in A(U)$$
, $y \in A(V)$.

Equality of the two composites is equivalent to $i_U(x)i_V(y) = i_V(y)i_U(x)$ inside A(T).

The Blue Key

Why Double Cats? Signals/Channels

- 1-cat limit: only inclusions \Rightarrow *-homs; no place for *channels/CP maps*.
- **Double win:** horizontal 1-cells = correspondences (Hilbert bimodules) model *CP maps*; composition = Connes fusion.
- **Concrete:** $\Phi_2 \circ \Phi_1$ corresponds to $M_1 \otimes_B M_2$. Signals as small on-stage effects after off-stage processes.

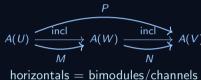
Shortcut

Why Double Cats? Transport

1-cat net

only inclusions (*-homs)
no notion of a route

Double AQFT



fusion: $P\cong M\otimes_{A(W)} N$

Secret path vs direct walk: 1-cat sees only places; the double adds routes and coherently equates them.

Dinner Party

Why Double Cats? Interfaces & Morita

1-cat net: compare by natural transformation

Strict comparison by *-homs only; no boundary/defect notion.

Double net: compare by interfaces

$$\mathcal{A}(U) \xrightarrow{\mathcal{A}(i_{U,V})} \mathcal{A}(V)$$

$$M_{U} |_{\mathscr{A}(i_{U,V}) \triangleright M_{U} \cong M_{V} \triangleleft \mathscr{B}(i_{U,V})} |_{M_{V}} M_{V}$$

$$\mathscr{B}(U) \xrightarrow{\mathscr{B}(i_{U,V})} \mathscr{B}(V)$$

Interfaces = bimodules, compose by fusion $M \otimes_{\mathscr{B}(\cdot)} N$; invertible \Rightarrow Morita equivalence.

Summary

- Double functor F: Mink → vNA: vertical *-homs, horizontal bimodules, intertwiners.
- Local net $A : \mathcal{O}(M) \rightarrow \mathbf{vNA}$; isotony/covariance/time-slice as standard.
- Locality: interchange \Rightarrow commuting subalgebras for $U \perp V$.
- Gluing: rule-preserving colimits; global net from pieces.
- New: channels (signals), routes (transport), interfaces/Morita not available in 1-cat nets.

Future Work

- **Foundations:** prove gluing as an operadic left Kan extension; locality/time-slice from interchange.
- **Examples:** free scalar/Dirac nets; compute glued $\mathcal{A}(M)$; check Haag duality, split property.
- Computational bridge: link to quantum λ -calculus (vNAs already model it in ∞ -dim.); evaluation as fusion.
- Interfaces: boundary/defect gluing; classify invertible bimodules (Morita).
- Type 3 vNAs: how we can use this AQFT definition to learn more about Type 3 vNAs

References I

- Juan Orendain.
 - Free Globularly Generated Double Categories I

 Theory and Applications of Categories, Vol. 34, No. 42, 2019, pp. 1343-1385.
- Juan Orendain.

 Globularly Generated Double Categories II: The Canonical Double Projection arXiV. 2021
- Uffe Haagerup.
 The Standard Form of Von Neumann Algebras
 Mathematica Scandinavica, Vol. 37, No. 2, pp. 271-283, 1975
- Romeo Brunetti, Klaus Fredenhagen.

 Algebraic approach to Quantum Field Theory

 arXiV, 2004

References II

Urs Schreiber.

AQFT from *n*-functorial AQFT

Communications in Mathematical Physics, Springer Science and Business Media LLC, Vol. 291, No. 2, pp. 357-401, 2009

🔋 Angelos Anastopoulos, Marco Benini.

Gluing algebraic quantum field theories on manifolds

Annales Henri Poincaré, Springer Science and Business Media LLC, 2025

Alan Shaw.

Scene-by-Scene Analysis of Mulholland Drive mulholland-drive.net, unknown year