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Classical hyperdoctrines

Start with
1. a category C of “things you want to talk about";
2. associate to each object X ∈ C a collection of “facts" that might be true of

elements of type X ;
3. explain how you do logical operations.

Lawvere’s perspective on logic: quantifiers are adjoints.



Classical hyperdoctrines

Definition
A regular hyperdoctrine is a functor Cop → Pos such that:

1. Each poset PX is ∧-semilattice;
2. For each morphism f : X → Y in C, the functor Pf : PY → PX has a left adjoint
∃f ;

3. These adjoints satisfy the Beck-Chevalley condition: for any pullback square
A I

B J

h

k g

f

, the canonical map ∃h ◦ Pk ⇒ Pg ◦ ∃f is invertible;

4. These adjoints satisfy Frobenius reciprocity: for each f : X → Y , the canonical map
∃f (Pf ∧ idPX )⇒ idPY ∧ ∃f is invertible.



Examples

1. C = Set, and P is the powerset functor:

• Predicates about X are subsets of X (“the subset of elements satisfying the predicate").
In particular, the predicates about 1 are truth-values ⊤ and ⊥;
• Given a map f : Y → X , Pf maps {y ∈ Y : φ(y)}, to {x ∈ X : φ(f (x))};
• ∃f maps {x ∈ X : φ(x)} to its image {y ∈ Y : ∃x ∈ X : y = f (x) ∧ φ(x)} under f .

Note that if φ(x , y) has two variables and πY : X × Y → Y is a projection map, then
∃πY ({(x , y) : φ(x , y)}) = {y ∈ Y : ∃x . φ(x , y)} recovers the usual quantification over a
variable.

• Beck-Chevalley guarantees that you can substitute y in φ(x , y) for some t before or
after quantifying over x and get the same result.

• Similarly, Frobenius tells you that if x isn’t free in φ, then ∃x . (φ(y) ∧ ψ(x , y)) is
equivalent to φ(y) ∧ ∃x . ψ(x , y).



Examples

2. If T is a regular theory (i.e., its axioms uses only ∧,⊤, and existential quantification),
then we can take C to be its syntactic category.

To each context Γ, we associate its Lindenbaum-Tarski algebra: formulas on those
variables, quotiented out by the relation saying φ(x̄) ≡ ψ(ȳ) if T ⊢reg φ(x̄) ⇐⇒ ψ(x̄).

This lets us see theories such as the theory of graphs as regular hyperdoctrines.



Loosen up

This can be slightly too restrictive:
1. There is no reason for the predicates to be elements of a poset; maybe they are

(e.g.) objects of a category
2. There is no reason why your ∧ operation must be a categorical product of

predicates; maybe it is a tensor product of some kind
3. There is no reason to insist that you can quantify over any morphism; maybe you

just need some.
If (C, L,R) is a cartesian adequate triple and the predicates form a (pseudo)monoid in a
cartesian 2-category K, we call the analogous notion (where we can only quantify over
maps in L) a (C, L,R)-regular indexed monoidal structure in K.



Examples

1. If C is a category with finite limits, then we can define a pseudofunctor
P : Cop → SM(Cat)strong by X 7→ C/X (which is cartesian monoidal), where
Pf : PY → PX is given by pulling back along f .

Each such Pf has a left adjoint Σ(f ) (the dependent sum), and the fact that these
adjunctions satisfy the Beck-Chevalley and Frobenius properties is given by the
well-known pullback pasting lemma.



Examples

2. For each set A, define PA := [0,∞]A, which is a monoidal poset under + and ≥.

For each function f : A→ B , precomposing predicates with f yields an order-preserving
map Pf : PB → PA (which is strict monoidal), and the assignment f 7→ Pf is functorial.

Each such Pf admits a left adjoint, namely ∃f : PA→ PB taking a predicate φ over A
to the predicate b 7→ infa∈f −1(b)(φ(a)) over B .

For more on this logic, check [2].



Theorem
The following data are equivalent for a cartesian adequate triple (C, L,R) and cartesian
2-category K:

1. A (C, L,R)- regular indexed monoidal structure P : C → SM(K)strong in K;
2. A lax symmetric monoidal (strong) double pseudofunctor P• : Span(C, L,R)op →

Qt(K) whose monoidal laxitors are companion commuter cells.



Double pseudofunctors from regular indexed structures

Fix a (C, L,R)- regular indexed monoidal structure P : Cop → SM(K)strong. Then:

• The left adjoints ∃f ⊢ Pf for f ∈ L are also pseudofunctors, with the structure
induced from Pf by taking mates;
• The monoidal structure can be moved from the fibres to P itself, i.e.,
P : Cop → SM(K)strong corresponds to a (cartesian) lax symmetric monoidal
P : Cop → K (c.f. [6] and [7]).



Double pseudofunctors from regular indexed structures

We extend P : Cop → K to a double pseudofunctor P• : Span(C, L,R)op → Qt(K).

The loose component of P• maps a span X1
x1←− X

x2−→ X2 with x2 ∈ L to ∃x2 ◦ Px1 and
a square

Y1 Y2

X1 X2

Yp

f1 f2

X
p

α

to



εx2

ηy2

P(y1) ∃(y2) P(f2)

P(α)

P(f1) P(x1) ∃(x2)



This comes with a loose compositor whose component P•(X ⊙ X ′)⇒ P•(X )⊙ P•(X ′)

at a composite span

X ⊙ X ′ X X1

X ′ X2

X3

a

b
⌟

x1

x2

x ′2
x ′3

is given by



(P•
⊙)X ,X ′ :=

ηx2

εb

∃(x2) P(x ′2) ∃(x ′3)

P(x1)

P(a) ∃(b)

P(x1a) ∃(x ′3b)



This is a pseudonatural transformation, whose inverse cell is given by

PX1 P(X ⊙ X ′) PX3

PX1 PX P(X ⊙ X ′) PX ′ PX3

PX1 PX PX2 PX ′ PX3

P(x1a)p
∃(x ′3b)p

Px1
p

Pa
p

∃b
p

∃x ′3
p

Px1
p

∃x2
p

Px ′2
p

∃x ′3
p

⇑ ⇑

Ba,b

x′2,x2
⇑

,

where Ba,b
x ′2,x2

is a Beck-Chevalley cell.



The unitor P•
e : e ◦ P → P•

1 ◦ e is the pseudonatural isomorphism with components

ePX → P•
1 (eX ) given by

PX PX PX

PX PX PX

P(idX ) ∃(idX )

ιPX (ι∃X )
−1 .



Double pseudofunctors from regular indexed structures

Note that the Beck-Chevalley property was used to ensure pseudonaturality of the loose
compositors, making P• a double pseudofunctor.

Frobenius reciprocity is linked to the monoidal structure.



Double pseudofunctors from regular indexed structures

Explicitly, the cartesian monoidal structure on P : Cop → K has:
• A monoidal laxitor µX ,Y : PX × PY → P(X × Y ) given by the composite

PX × PY
P(πX )×P(πY )−−−−−−−−−→ P(X × Y )2

⊗X×Y−−−−→ P(X × Y ).
• A monoidal unit similarly induced by the unit of the pseudomonoid P(1).

The monoidal laxitor µ extends to a tight pseudotransformation, whose tight component
is µ and whose loose component µ• : P•(−×−)→ P• × P• is given by



µ•A,X :=

εa2×x2

µa2,x2

ηa2 × ηx2

µ−1
a1,x1

∃a2 × ∃x2 µA2,X2

∃(a2 × x2)

µA,X
P(a1)× P(x1)

µA1,X1 P(a1 × x1)



This makes P•
1 symmetric comonoidal: since P is a lax symmetric monoidal

pseudofunctor, there are invertible cells

(PA× PB)× PC PA× (PB × PC )

P(A× B)× PC PA× P(B × C )

P((A× B)× C ) P(A× (B × C ))

αK
PA,PB,PC

µA,B×idPC idPA×µB,C

µA×B,C µA,B×C

P(αC
A,B,C )

aA,B,C in K such that



µx1,y1 × ePz1

µx1×y1,z1

aX1,Y1,Z1

P(x1 × (y1 × z1)) P(αC
X ,Y ,Z )

µX1,Y1×Z1

idPX1 × µY1,Z1

αK
PX1,PY1,PZ1

P((x1 × y1)× z1)

µX1,Y1 × idPZ1

(Px1 × Py1)× Pz1 µX ,Y × idPZ

=

aX ,Y ,Z

αK
Px1,Py1,Pz1

ePx1 × µy1,z1

µx1,y1×z1

µX1,Y1×Z1 P(x1 × (y1 × z1))

P(αC
X ,Y ,Z )

idPX1 × µY1,Z1

αK
PX1,PY1,PZ1

(Px1 × Py1)× Pz1

µX ,Y × Pz1 µX×Y ,Z

.



A dual equation holds for ∃, since it is comonoidal. We can put them together to show
that for loose X ,Y ,Z , we have
αP•X ,P•Y ,P•Z ◦ (µ•X ,Y × eP•Z ) ◦ µ•X×Y ,Z = (eP•X × µ•Y ,Z ) ◦ µ•X ,Y×Z ◦ P•(α

Span(C)
X ,Y ,Z ).

A similar argument also works for the monoidal unit laws and the symmetry axioms.



A dual equation holds for ∃, since it is comonoidal. We can put them together to show
that for loose X ,Y ,Z , we have
αP•X ,P•Y ,P•Z ◦ (µ•X ,Y × eP•Z ) ◦ µ•X×Y ,Z = (eP•X × µ•Y ,Z ) ◦ µ•X ,Y×Z ◦ P•(α

Span(C)
X ,Y ,Z ).
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Commuters

Definition (1)

A square
A1 A2

B1 B2

Ap
f1 f2

B
p

α in a double category is a companion commuter if

A1 A1 A2 B2

A1 B1 B2 B2

Ap
f1

f >2p
f2

f >1 B
p

α

is a tight isomorphism.

In Qt(K), α is a companion commuter iff it is an invertible cell in K.



Double pseudofunctors from regular indexed structures

Proposition
Frobenius ⇒ each µ•X ,Y for (C, L,R)-spans X ,Y is a companion commuter square in
Qt(K).

Proof.
Idea: µ• is built out of µ−1

x1,y1 and the mate of µx2,y2 , so it is enough to show the latter is
invertible as a cell in K.

We can build this inverse out of Beck-Chevalley and Frobenius cells.



Double pseudofunctors from regular indexed structures

Proposition
Frobenius ⇒ each µ•X ,Y for (C, L,R)-spans X ,Y is a companion commuter square in
Qt(K).

Proof.
Idea: µ• is built out of µ−1

x1,y1 and the mate of µx2,y2 , so it is enough to show the latter is
invertible as a cell in K.

We can build this inverse out of Beck-Chevalley and Frobenius cells.



mate(µx2,y2)
−1 =

Bx2,πX2
× By2,πY2

eq.K

FR
idX2×y2

Bx2×idY2 ,idX2×y2 ×□P(X2×Y )

FL
x2×idY

P(πX )× P(πY ) ⊗X×Y ∃(x2 × y2)

P(πX )× P(πX2,Y
Y )

⊗X2×Y ∃(idX2 × y2)

P(πX ,Y2
X )× P(πX2,Y

Y )

id× ∃(idX2 × y2)

∃(x2 × idY2)× ∃(idX2 × y2)

∃x2 × ∃y2 P(πX2,Y2
X2

)× P(πX2,Y2
Y2

) ⊗X2×Y2



Double pseudofunctors from regular indexed structures

Putting everything together, a (C, L,R)-regular indexed monoidal structure yields a lax
symmetric monoidal double pseudofunctor Span(C, L,R)op → Qt(K) whose laxitors are
companion commuters.

For the converse, we will happily assume the Grandis-Paré‘s Strictification Theorem (7.5
in [5]) has been applied first, and show how the tight component of a lax symmetric
monoidal double functor Span(C, L,R)op → Qt(K) whose laxitors are companion
commuters is indeed a regular monoidal structure.
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Indexed structures out of double functors

Fix a lax symmetric monoidal double functor Q : Span(C, L,R)op → Qt(K) whose
laxitors are companion commuters.

Step 1. Normal double functors preserve companions and conjoints: as every tight f in
Span(C, L,R) has a companion f ∗ and a conjoint f!, we have Q(f!) ⊢ Q(f ) as maps in K.



Indexed structures out of double functors

Step 2. Note that the Beck-Chevalley property follows from the fact that spans compose

by pullback: given a (C, L,R)-pullback
A B

X Y

f

h
⌟

k

g

, we can write

A

X B

X Y B

h f⌟

g k

g!
p

k∗p

∼= h∗ ⊙ f!,

and the double functor maps these to Q(k)∃(g) ∼= ∃(f )Q(h). This iso is in fact the
Beck-Chevalley cell.



Indexed structures out of double functors

Step 3. Since Q is lax symmetric monoidal, we can transfer the monoidal structure to

the fibres: ⊗A : QA× QA→ QA is given by QA× QA
µA,A−−→ Q(A× A)

Q(∆A)−−−−→ QA, the

monoid units are IA := 1 I−→ Q(1)
Q(!A)−−−→ QA.



Indexed structures out of double functors
Step 4. Use the inverses of µx ,y (which exists as the µ cells are companion commuters)
to construct the Frobenius cells:

Q(B × A) Q(B × A) QA× QA Q(A× A)

Q(B × A) Q(B × A) Q(A× A) QA

QB × QA Q(B × A) Q(B × B) Q(B × B) QB

QB × QA QB × QA QB × QB Q(B × B) QB

p
Q(f ∗)×lQAp

µB,A

µA,Ap

µA,A Q(∆A)

µB,Ap
Q(f ∗×lA)p

Q(∆∗
A)p

Q(f!)

µB,Ap
Q(lB×f!)p p

Q(∆∗
B)p

p
lB×Q(f!)

p µB,B
p

Q(∆∗
B)

p

⟲
⟲

⟲

µf ∗,lA

⟲
(⋆)

⟲ ⟲

,

where the cell in the bottom-left is the companion of µlB ,f! , and the cell ⋆ in the middle is
an isocell by Beck-Chevalley



Logical systems

DJM: Since each P• is a lax symmetric monoidal double pseudofunctor, we can form the
following pullback:

Cert(P)coop Qt(∗ ↓colax Cat)

Span(C)op Qt(Cat)

Qt(d∗
0 )

P•

⌟

This defines an interface symmetric monoidal double category for a system.



Food for thought
Some directions to go with this:

1. Further examples (credal relations, geometry?);

2. We want to extend the result to when the fibres are monoidal closed, so we have
access to more expressive logics (e.g., first-order logic, dependent type theory);

3. Beck-Chevaley is fruit of being defined on Span, and Frobenius is due to having
Beck-Chevalley and the monoidal laxitor being a companion commuter. There is no
reason for the target to be a quintet double category: you just need enough
companions and conjoints;

4. We thus have a more general notion of hyperdoctrine: a lax monoidal pseudo double
functor between double categories with enough companions and conjoints.
Incidently, this liberates the Beck-Chevalley condition from pullbacks (replacing
them with whatever loose composite you have in the domain);

5. In a sense, these double functors emerging from hyperdoctrines are trivial: the loose
component is fully induced by the tight component. Perhaps there are more
interesting examples where the tight and loose components contribute to the logic
in equal measure.
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Thank you for your time!
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