
Some Takeaways from Poly at Work 2024

Harrison Grodin

In this document, I describe some takeaways from the Poly at Work 2024 work-
shop. Developments were heavily impacted by discussions with other participants.
The ideas presented here are joint work with Reed Mullanix.

1 Indexed Inductive Types via Endobicomodules

In programming languages, it is common to have inductive types. For example, the following
type describes syntax trees:

type t =

| Bool of bool

| String of string

| And of t * t

| Concat of t * t

| IsEmpty of t

| If of t * t * t

This type can be understood as the initial algebra of the polynomial p = 2 + S + y2 + y + y3,
where S is the set of finite-length strings. Via initiality, we can write a map out of this type
to evaluate syntax trees. However, we are presented with a problem: what should we do with
invalid states, like Concat (Bool true, String "a")? To remedy this, we may break t into
two mutually-inductive types: one for boolean expressions and one for string expressions.

type t1 =

| Bool of bool

| And of t1 * t1

| IsEmpty of t2

and t2 =

| String of string

| Concat of t2 * t2

| If of t1 * t2 * t2

Now, an element of t1 is a well-formed boolean expression, and an element of t2 is a well-formed
string expression. Invalid states are no longer representable: Concat (Bool true, String "a

") is not an element of either t1 or t2. We can express types t1 and t2 simultaneously as the

1



initial algebra of a polynomial in two variables:

p1 = 2 + y21 + y2

p2 = S + y22 + y1y
2
2

Such a polynomial in two variables can be understood as the data of an endobicomodule

2y ▷ ◁
p

2y,

using the polynomial p from the earlier type. This consists of two maps, λ and ρ, subject to
some coherence conditions.

• A left-module λ : p → 2p consists of a map p(1) → 2 that assigns to each position in p
whether it belongs to p1 or p2.

• A right-module ρ : p → p ◁ 2y consists of a map p[i] → 2 for each i : p(1) that assigns to
each direction whether it should go to y1 or y2.

To support N mutually-inductive types, one can use a bicomodule Ny ▷ ◁ Ny. More gen-
erally, to support indexed inductive types with a parameter type A, one can use a bicomodule
Ay ▷ ◁ Ay.

This development gives a new perspective on “modes”, splitting a type (like t) into multiple
types (like t1 and t2) where each has different characteristics.

Question 1. What is the type-theoretic interpretation of endobicomodules when the domain
is not a linear Ay, but rather an arbitrary polynomial q?

2 Foundations of Poly

What is the essence of Poly?

2.1 A Zoo of Definitions

There are many equivalent definitions of Poly. One could say that Poly is:

1. the category of dependent lenses;

2. the coproduct completion of the product completion of the terminal category;

3. Fam(Setop);

4. the category of Grothendieck lenses;

5. the category of Set-indexed coproducts of representable functors;

6. a diagram in a locally cartesian closed category;

7. the category of connected-limit-preserving functors.

We observe that these definitions seem to be naturally grouped as follows:

I. Perspectives 1. and 2. describe Poly by freely adding limits and then colimits to a
category; these look like Fam(Lim(C)op).

2



II. Perspectives 3. to 5. describe Poly by freely adding colimits to a category that already
has limits; these look like Fam(Cop).

III. Perspectives 6. and 7. describePoly in terms of structure that already exists in a category.

What structure of Poly remains as we vary the parameters on each construction? Group I.
is a special case of Group II., but preliminary discussions suggest that freely-added limits are
not essential; we therefore focus on Group II.. Here, we always have coproducts, since they are
freely added. Moreover, we get Day convolution structures for monoidal structures available
in C. Recall that the objects of Fam(Cop) are pairs (A : Set, B : A → C) of positions and
directions, where the domain of B is the set A treated as a discrete category. For any monoidal
structure (·, I) on C, we get the monoidal structure

(A,B)⊙ (A,B′) = (A×A′, (a, a′) 7→ B(a) ·B′(a′))

on Fam(Cop). We can also define the composition product ◁ as in Poly, using external hom
C(−,=) in place of the function space →.

Question 2. Defined this way, what properties does ◁ retain?

Perspective 6. generally behaves like Poly regardless of the base category and has been studied
extensively in the literature. In his lightning talk, Kevin discussed that Perspective 7. can be
altered to finite-connected-limit-preserving functors to produce a Poly-like category.

Question 3. What other properties on functors describe categories resembling Poly?

2.2 Poly as a Friendly Normal Duoidal Category

From another viewpoint, one could argue that Poly is fundamentally about the ⊗ and ◁
monoidal structures. Most constructions in Poly are defined in terms of adjoints to these
structures. Moreover, these monoidal structures (y,⊗) and (y, ◁) are normal duoidal. Pre-
liminary discussions suggest that generalizations of Poly may arise through normal duoidal
structures, but more work is needed to develop this idea further.

3


	Indexed Inductive Types via Endobicomodules
	Foundations of Poly
	A Zoo of Definitions
	Poly as a Friendly Normal Duoidal Category


