Three Views on Org

Sophie Libkind
March 21, 2024

I first learned about Org from David Spivak back in 2021, and it remains one of my favorite
constructions in Poly. I love Org because it articulates one of the most fundamental features
of living systems: that in a composite system, not only do the parts change over time but the
interaction pattern between the parts changes as well.

In this note, we will show three different views on Org. The first is the original way that I
learned it from David and lives directly in Poly. The second two are perspectives introduced to
me by Toby Smithe and Matteo Capucci. Each of these perspectives shows how Org is a particular
case of a more general construction.

1 Vanilla Org

Generally, I think about Org as an operad, but here we will introduce Org as a symmetric monoidal
category. Its objects are the objects of Poly and a morphism Org(p, q) is a [p, ¢]-coalgebra, in other
words a set of states S and a polynomial map Sy° — [p, ¢]. Its monoidal product is given by ®.

Example 1. Suppose p1,--- ,p, : Poly represent interfaces for my subordinates. The positions of
p; are the outputs of my ith subordinate. The directions of p; are the inputs that I send my ith
subordinate. Suppose that q represents the interface for my manager. The positions of q are what
I output to my manager and the directions of q are the instructions I receive from my manager.
Then a morphism from p1 ® -+ py, in Org is a [p1 ® - -+ ® pp, q]-coalgebra. Unraveling defintions,
this morphism consists a set of states S (my possible states) and a three maps:

e Read out. Given my state and outputs from my subordinates, an output to my manager.

e Read in.Given my states, outputs from my subordinates, and instructions to my manager,
inputs to my subordinates.

e Update. Given my states, outputs from my subordinates, and instructions to my manager, a
new state for myself.

Hence my state influences both how the subordinates talk to each other and how their outputs affect
what I output to my manager. And critically it evolves!

Org gets its name from organization because its morphisms represent evolving organizations,
in this example organizations of workers.



Figure 1: The whiteboard on which I first learned about Org (here named Sys).

2 Animating categories

Let’s start with the abstraction of animating categories defined by Toby Smithe.

Let H be a category enriched in the symmetric monoidal category (C,®c,1¢) and let Sys :
(C,®c,1¢) — (Cat, x,1) be a lax monoidal functor. Then we can pushforward H along Sys to get
the category Sys, H that is enriched in (Cat, x,1). ! Therefore Sys, H is a 2-category which Toby
calls, the category H animated by Sys.

How is Org an animated category? First, note that since Poly has a ® closure, there is a
category Poly‘S that is enriched in (Poly, ®,y). In particular,

obPoly® := ob Poly
and

Poly® (p, q) = [p, q].

There is a lax monoidal functor Coalg : (Poly,®,y) — (Cat, x,1) which maps a polynomial p
to the category of p-coalgebras. Unraveling the definitions, Coalg*Poly‘S is the 2-category whose
objects are polynomials and where the morphisms from p to ¢ are [p, ¢]-coalgebras. Sound familiar?
2

t’s unclear whether this is enriched or weakly enriched and hence whether Sys, H is a 2-category or a bicategory.

2Remember that Org is a symmetric monoidal category. What happened to its symmetric monoidal structure?
Well instead of starting with a Poly€ as a category enriched in Poly, we’ll need to start with Poly® as a symmetric
moniodal category enriched in Poly. Fortunately, I believe that the machinery developed by Brandon Shapiro gives
us the tools to make sense of this statement.



3 Monads in Prof

Recall the functor Coalg : Poly — Cat which sends each polynomial to the category of p-
coalgebras. This is equivalent to a profunctor

1 Cople Poly.
But in fact we can generalize this to a profuctor?
Poly w Poly.*
And the fun doesn’t stop there! In fact Coalg([—, —]) is a monad in Prof since we have maps as
below that obey the monad laws.
poly

/ﬂ\ Coalg([—,-]
Poly m Poly g—g Poly
Coalg([—,-])
Note that there is a functor from Prof — Span(Set) which sends a category to its set of objects.

So Coalg([—, —]) is a monad in Span(Set), in other words it’s a category. What category? Why,
Org of course!

3A detail to sort out: Coalg([—,—]) in fact produces a category for each pair p,q : Poly. Therefore, we may in
fact want the double category of polynomials as its domain and codomain as well as the category of double categories,
double profunctors, and natural transforms.

4This is a generalization because Coalg is equivalent to Coalg([y, —]).



