The Poly-shaped ingredients of predictive coding

AUTHOR	PUBLISHED
Toby St Clere Smithe 📵	March 1, 2024

ABSTRACT

Intelligent systems in the world seem to make predictions, with some uncertainty. How do they do this? Some of the ingredients of this story are Poly-shaped, and we sketch them here.

1 Polynomials with stochastic feedback

The form of **Poly** with which we may be most familiar can be obtained by constructing *Grothendieck lenses* from the self-indexing $\mathbf{Set}/-$ of \mathbf{Set} .

Definition 1 Set/- is an indexed category **Set** $^{\mathrm{op}} \to \mathbf{Set}$. It maps a set B to the slice category \mathbf{Set}/B whose objects are pairs (E,p) of a set E and a function (or 'bundle') $p:E\to B$. The morphisms $(E,p)\to (E',p')$ of \mathbf{Set}/B are functions $\varphi:E\to E'$ such that $p'\circ\varphi=p$. Given a function $f:A\to B$, \mathbf{Set}/f is the functor $\mathbf{Set}/B\to \mathbf{Set}/A$ which acts by pullback, sometimes written f^* . \square

Proposition 1 The category of <u>Grothendieck lenses</u> **Lens**(**Set**/-) in **Set**/- is **Poly**. (This is why **Poly** is sometimes known as a category of dependent lenses.) \Box

We don't have to construct dependent lenses in **Set**, however. If we choose another fibration (another model of dependent types), we will obtain another category of dependent lenses, and this may behave much like **Poly**. (For example, it will often have a tensor product \otimes — and more structures, too!)

In particular, we can define an indexed category whose Grothendieck lenses will behave like "**Poly** with stochastic feedback". We can do this in great generality, using the notion of *kernel* between measurable spaces.

Definition 2 If X, Y are measurable spaces, a *kernel* $k: X \rightsquigarrow Y$ is a function $k: X \times \Sigma_Y \to [0, \infty]$ which is measurable in the first argument X and which is an 's-finite' measure in the second argument Σ_Y , the σ -algebra associated to Y. \square

Proposition 2 Measurable spaces and kernels between them form the objects and morphisms of a category **Krn**. Composition $X \stackrel{k}{\leadsto} Y \stackrel{h}{\leadsto} Z$ is given by the Chapman-Kolmogorov equation:

$$h\circ k: (x,C)\mapsto \int_{y:Y} g(x,\mathrm{d} y)\,h(y,C)\;.$$

Identity kernels map points to Dirac delta ('indicator') measures. \Box

Proposition 3 There is an embedding δ : **Meas** \to **Krn** of measurable functions into kernels. A measurable function $f: X \to Y$ is mapped to the kernel $\delta_f: X \leadsto Y$ defined by

$$(x,U)\mapsto [f(x)\in U]$$

where the indicator $[f(x) \in U]$ equals 1 if $f(x) \in U$ and 0 otherwise. \square

Proposition 4 There is an indexed category $\mathcal{K}: \mathbf{Meas}^{\mathrm{op}} \to \mathbf{Cat}$ defined by mapping a measurable space B to the category \mathcal{K}_B whose objects are pairs (E,p) of a measurable space E and a measurable function $p:E\to B$. The morphisms $(E,p)\leadsto (E',p')$ of \mathcal{K}_B are kernels $k:E\leadsto E'$ such that $\delta'_p\circ k=\delta_p$. This means that k is a kernel *fibrewise*: for any generalized element $b:I\to B$ in \mathbf{Meas}, k yields a kernels $k[b]:p[b]\leadsto p'[b]$, where p[b] is the pullback object of p along p. Given a function p and which acts on kernels p and p and which acts on kernels p and p and p and which acts on kernels p and p and p and p are defined fibrewise by p and p and p and which acts on kernels p and p are defined fibrewise by p and p and p and p and p are defined fibrewise by p and p and p are defined fibrewise by p and p and p are defined fibrewise by p and p are p and p are defined fibrewise by p and p are p are p and p are p are p are p and p are p and p are p and p are p are p are p and p are p and p are p and p are p and p are p are p are p and p are p are p are p are p and p are p are p and p are p are p and p are p are

The category of Grothendieck lenses in K behaves something like **Poly** where the backward components of morphisms may be stochastic.

Proposition 5 The objects of **Lens**(\mathcal{K}) are pairs (B,p) of a measurable space B and an object p of \mathcal{K}_B . We can write these simply as p, by defining p(1) to denote the base object B. We can likewise define formal notation $\sum_{i:p(1)}p[i]$ to denote the total space E of p, thinking of i as a generalized element $i:I\to p(1)$ of the base of p. Finally, we can follow this formal intuition further, to write p itself as $\sum_{i:p(1)}y^{p[i]}$.

The morphisms $\varphi: p \to q$ of $\mathbf{Lens}(\mathcal{K})$ are then pairs $(\varphi_1, \varphi^{\sharp})$ of a measurable function $\varphi_1: p(1) \to q(1)$ and a fibrewise kernel $\varphi^{\sharp}[i]: q[\varphi_1(i)] \leadsto p[i] - i.e.$, a kernel $q[\varphi_1] \leadsto p$ in $\mathcal{K}_{p(1)}$. Composition of morphisms in $\mathbf{Lens}(\mathcal{K})$ is as in \mathbf{Poly} . \square

Remark. The fibration \mathcal{K} is actually a bifibration, meaning that each functor \mathcal{K}_f has a left adjoint, Σ_f . These left adjoints formally justify the foregoing Σ notation. \square

Example 1 A p-coalgebra in $\mathbf{Lens}(\mathcal{K})$ is a pair (S,θ) of a measurable space S and a morphism $\theta: Sy^S \to p$ in $\mathbf{Lens}(\mathcal{K})$. This is a stochastic dependent Moore machine: a pair of an 'output' function $\theta_1: S \to p(1)$ and a family of update kernels $\theta_s^{\sharp}: p[\theta_1(s)] \leadsto S$ for each $s \in S$. A morphism of p-coalgebras is a measurable function that commutes with the dynamics. \square

Proposition 6 There is an opindexed category $\mathsf{Coalg} : \mathbf{Lens}(\mathcal{K}) \to \mathbf{Cat}$ which maps each polynomial p to the category $\mathsf{Coalg}(p)$ of stochastic dependent Moore machines. Given a morphism $\varphi : p \to p'$ in $\mathsf{Lens}(\mathcal{K})$, $\mathsf{Coalg}(\varphi)$ acts by post-composition. \square

1.1 Random variables and 'quasi-Borel' kernels

During the workshop, David Spivak pointed out to me that we can still work with measurable spaces¹ and stay within the usual **Poly** defined within **Set**, by adopting an analogue of the monad lott := $\sum_{n:\mathbb{N}} \sum_{d:\Delta(n)} y^n$ (here $\Delta(n)$ is the set of distributions on the finite set with size n). We could call this polynomial rand, as it captures a very broad notion of $random\ variable$:

$$\mathsf{rand} := \sum_{X: \mathbf{Meas}} \sum_{\mu: MX} y^X$$

where MX denotes the set of (s-finite) measures on X.

We did not prove that rand is a monad in **Poly**, although it seems likely to be, but we can still gain an intuition for its Kleisli morphisms. These behave a little like a possibly more familiar notion: quasi-Borel kernels.

A quasi-Borel space is a set X along with a subset of $X^{\mathbb{R}}$ that we could think of as random variables on X (satisfying some 'sheaf' axioms). Quasi-Borel spaces form a category **QBS**, with which we can define a notion of kernel.

Definition 3 A *quasi-Borel kernel* $k: X \rightsquigarrow Y$ between quasi-Borel spaces X and Y is a function $k: X \to \mathbf{QBS}(\mathbb{R}, Y)$. Two quasi-Borel kernels $k, k': X \rightsquigarrow Y$ are considered equal if pushing forward the uniform measure on the unit interval yields the same measure on Y for all $x \in X$. (To obtain a notion of s-finite quasi-Borel kernel, we can work with 'partial' functions $X \to \mathbf{QBS}(\mathbb{R}, Y+1)$ instead, and push forward the uniform measure on \mathbb{R} . But we will not concern ourselves with such details here.) \square

Quasi-Borel spaces and kernels between them form a category **qbKrn**. Composition ends up being much as in \mathbf{Krn} — but again we will not spell out the details.

Now consider a morphism $Ay \to \operatorname{rand} \lhd By$ in Poly . This consists of a function $A \to \sum_X \sum_\mu B^X$ — that is, a function that returns a combination of a "sample space" X with a "noise source" μ and a "random variable" in B^X from the sample space X to B. Notice that this generalizes the quasi-Borel picture: there, a kernel yields a random variable from a privileged sample space $\mathbb R$ equipped with the uniform noise source; now, there is freedom to choose.

2 Animated and dynamic categories

Using some of the ingredients sketched so far, we can render categories 'dynamical'. For our purposes, a *systems theory* will be an opindexed category defined on a *category* of interfaces, which will usually be **Poly** or another lens category, such as **Lens**(\mathcal{K}). Thus, the opindexed category **Coalg** above is a systems theory.

If we have a category enriched in a category of interfaces, we can *change its base of enrichment* along a corresponding systems theory, which will yield a bicategory whose objects are the objects of the starting category, whose 1-cells are dynamical systems on the 'hom' interfaces, and whose 2-cells are the corresponding morphisms of those systems. This process, of turning a category into a bicategory of dynamical systems, is what I call *animation*.

Example 2 (Animating monoidal categories) Given any monoidal category $(\mathscr{C}, I, \otimes)$, we can write down a corresponding **Poly**-enriched category \mathscr{C}_P which has the same objects as \mathscr{C} . Between every pair (A, B) of objects in \mathscr{C} , we have a hom polynomial $\mathscr{C}(A, B)$ $y^{\mathscr{C}(I,A)}$. For every triple (A, B, C) of objects, there is a composition morphism $\mathscr{C}(B, C)$ $y^{\mathscr{C}(I,B)}$ \otimes $\mathscr{C}(A, B)$ $y^{\mathscr{C}(I,A)}$ which acts in the forward direction by composition and in the backward direction, given $(g, f) \in \mathscr{C}(B, C) \times \mathscr{C}(A, B)$ by mapping $s : \mathscr{C}(I, A)$ to $(f \circ s, s)$.

If we choose (**Set**, 1, \times) as our monoidal category, and animate **Set**_P along **Coalg**, then we obtain a bicategory whose 1-cells $A \to B$ are Mealy machines $Sy^S \to B^A y^A$. \square

Example 3 (Org) Note that **Poly** itself is **Poly**-enriched, via its internal hom. Thus, we can change *its* base along **Coalg**, to obtain a bicategory of dynamical systems on hom polynomials. This bicategory is sometimes known as **Org**. \Box

A <u>dynamic category</u> is then a category enriched in the bicategory **Org**. We can generalize this using animation.

Definition 4 A *generalized dynamic category* is a category enriched in a bicategory resulting from some animation.

Remark. In discussion with Matteo Capucci and Sophie Libkind, it was observed that every animation yields a monad in **Prof** (the bicategory of categories and profunctors). Such monads can be thought of as bidirectional systems theories (and may be accordingly generalized). Hopefully, other artifacts from the workshop discuss this!

3 Predictive coding, via animation

It is known that deep learning systems yield dynamic categories (in **Org**), and predictive coding feels similar, except that instead of passing forward vectors, one passes forward 'beliefs'; and instead of passing backward tangent vectors, one passes back prediction errors.

It turns out that we can think of predictive coding as a generalized form of deep learning: but instead of working in Euclidean spaces, we must work with *information geometry*. In this way, we can define a *predictive coding* dynamic category (in **Org**, or perhaps a stochastic variant of it, obtained from **Lens**(\mathcal{K})).

A dynamic category (really, dynamic 'operad') in **Org** is defined first by a base polynomial t. In the case of deep learning, this is $\mathbb{R} y^{\mathbb{R}}$, where we think of the exponent as the tangent space to each point of \mathbb{R} .

In the case of predictive coding, we fix a type of belief that the system predicts with: usually, this is Gaussians (with fixed variance σ). Thus, we can define a base polynomial $\sum_{\gamma:\mathbf{Gauss}(\mathbb{R})} y^{\mathsf{Tan}_{\gamma}\mathbf{Gauss}(\mathbb{R})}$. The set of tangent vectors $\mathsf{Tan}_{\gamma}\mathbf{Gauss}(\mathbb{R})$ at a given Gaussian γ with mean μ_{γ} is the set of functions $x \mapsto \sigma^{-1}(\mu_{\gamma} - x) - i.e.$, the set of "precision-weighted" prediction errors, given the prediction μ_{γ} .

With this base polynomial, the dynamic category story for deep learning may be retold — but now one obtains *predictive coding*! There are some details to fix, however, which we have no space (or time!) to detail here! For example, we need to define a weakening of the dynamic category structure, in order to incorporate interesting correlations.

A sketch of this story — and another variant, making use of animation primarily (rather than dynamic categories) — may be found in <u>the bonus slides of my DPhil viva</u> presentation.

Footnotes

1. I will ignore size issues here. ←

Reuse