The Poly-shaped ingredients of predictive coding

AUTHOR PUBLISHED
Toby St Clere Smithe (March 1, 2024
ABSTRACT

Intelligent systems in the world seem to make predictions, with some uncertainty. How do they

do this? Some of the ingredients of this story are Poly-shaped, and we sketch them here.

1 Polynomials with stochastic feedback

The form of Poly with which we may be most familiar can be obtained by

constructing Grothendieck lenses from the self-indexing Set/— of Set.

Definition 1 Set/— is an indexed category Set °® — Set. It maps a set B to the slice
category Set/B whose objects are pairs (E, p) of a set E' and a function (or ‘bundle’)
p: E — B. The morphisms (E,p) — (E',p’) of Set/B are functions ¢ : E — E’ such
thatp’ o ¢ = p. Given a function f : A — B, Set/f is the functor Set/B — Set/A which

acts by pullback, sometimes written f*. [J

Proposition 1 The category of Grothendieck lenses Lens(Set/—) in Set/— is Poly. (This

is why Poly is sometimes known as a category of dependent lenses.) [

We don’t have to construct dependent lenses in Set, however. If we choose another
fibration (another model of dependent types), we will obtain another category of
dependent lenses, and this may behave much like Poly. (For example, it will often

have a tensor product ® — and more structures, too!)

In particular, we can define an indexed category whose Grothendieck lenses will
behave like “Poly with stochastic feedback™ We can do this in great generality. using

the notion of kernel between measurable spaces.

Definition 2 If XY are measurable spaces, a kernel k : X ~» Y is a function
k: X x Xy — [0,00] which is measurable in the first argument X and which is an ‘s-

finite’ measure in the second argument Xy, the o-algebra associated to Y. [J

Proposition 2 Measurable spaces and kernels between them form the objects and
morphisms of a category Krn. Composition X ~» Y ~» Z is given by the Chapman-

Kolmogorov equation:

http://arxiv.org/abs/1908.02202
http://arxiv.org/abs/1908.02202
http://arxiv.org/abs/1908.02202
https://tsmithe.net/
https://tsmithe.net/
https://orcid.org/0000-0002-8317-8722
https://orcid.org/0000-0002-8317-8722

hok:(z,C)— [g(z,dy)h(y,C).
yY

Identity kernels map points to Dirac delta (‘indicator’) measures. [

Proposition 3 There is an embedding § : Meas — Krn of measurable functions into
kernels. A measurable function f : X — Y is mapped to the kernel 67 : X ~» Y defined
by

(z,U) = [f(z) € U]
where the indicator [f(z) € U] equals 1if f(x) € U and o otherwise. [J

Proposition 4 There is an indexed category K : Meas °® — Cat defined by mapping a
measurable space B to the category Kp whose objects are pairs (E, p) of a measurable
space E and a measurable function p : E — B. The morphisms (E,p) ~ (E',p') of Kp
are kernels k : E ~» E’ such that §), o k = §,,. This means that k is a kernel fibrewise: for
any generalized element b : I — Bin Meas, k yields a kernels k[b] : p[b] ~ p'[b]. where
p[b] is the pullback object of p along b. Given a function f : A — B, there is a functor
Ky : Kp — K4 which maps objects to their pullback along f and which acts on kernels
k to yield kernels k[f] that are defined fibrewise by k[f(a)]. O

The category of Grothendieck lenses in L behaves something like Poly where the

backward components of morphisms may be stochastic.

Proposition 5 The objects of Lens(K) are pairs (B, p) of a measurable space B and an
object p of . We can write these simply as p, by defining p(1) to denote the base
object B. We can likewise define formal notation -, ;) p[i] to denote the total space E
of p, thinking of 7 as a generalized element i : I — p(1) of the base of p. Finally, we can

follow this formal intuition further. to write p itself'as 3=,) yPlil

The morphisms ¢ : p — g of Lens(K) are then pairs (¢1, ') of a measurable function
@1 :p(1) — (1) and a fibrewise kernel ¢![i] : g[p1(i)] ~ p[i] — i.e.. a kernel g[p] ~ pin

Kp(1)- Composition of morphisms in Lens(K) is as in Poly. []

Remark. The fibration K is actually a bifibration, meaning that each functor Ky has a

left adjoint, X . These left adjoints formally justify the foregoing X notation. [

Example 1 A p-coalgebra in Lens(K) is a pair (.9, 0) of a measurable space S and a
morphism 6 : Sy® — p in Lens(K). This is a stochastic dependent Moore machine: a
pair of an ‘output’ function 6; : S — p(1) and a family of update kernels

0% pl01(s)] ~ S for each s € S. A morphism of p-coalgebras is a measurable function

that commutes with the dynamics. [

Proposition 6 There is an opindexed category Coalg : Lens(K) — Cat which maps
each polynomial p to the category Coalg(p) of stochastic dependent Moore machines.

Given a morphism ¢ : p — p’ in Lens(K), Coalg(y) acts by post-composition. [J

1.1 Random variables and ‘quasi-Borel’ kernels

During the workshop. David Spivak pointed out to me that we can still work with
measurable spaces' and stay within the usual Poly defined within Set, by adopting an
analogue of the monad lott := >, >~ ya(, ¥" (here A(n) is the set of distributions on
the finite set with size n). We could call this polynomial rand, as it captures a very
broad notion of random variable:

rand := Z ZyX

X:Meas pu:MX
where M X denotes the set of (s-finite) measures on X.

We did not prove that rand is a monad in Poly, although it seems likely to be, but we
can still gain an intuition for its Kleisli morphisms. These behave a little like a

possibly more familiar notion: quasi-Borel kernels.

A quasi-Borel space is a set X along with a subset of X® that we could think of as
random variables on X (satisfying some ‘sheaf” axioms). Quasi-Borel spaces form a

category QBS., with which we can define a notion of kernel.

Definition 3 A quasi-Borel kernel k : X ~ Y between quasi-Borel spaces X and Y is a
function k : X — QBS(R,Y). Two quasi-Borel kernels k, k' : X ~» Y are considered
equal if pushing forward the uniform measure on the unit interval yields the same
measure on Y for all z € X. (To obtain a notion of s-finite quasi-Borel kernel, we can
work with ‘partial’ functions X — QBS(R,Y + 1) instead, and push forward the

uniform measure on R. But we will not concern ourselves with such details here.) [

Quasi-Borel spaces and kernels between them form a category gbKrn. Composition

ends up being much as in Krn — but again we will not spell out the details.

Now consider a morphism Ay — rand < By in Poly. This consists of a function

A= x>, BX — that is. a function that returns a combination of a “sample space”
X with a “noise source” x and a “random variable” in B from the sample space X to
B. Notice that this generalizes the quasi-Borel picture: there, a kernel yields a random
variable from a privileged sample space R equipped with the uniform noise source;:

now, there is freedom to choose.

http://localhost:8080/p/poly-artifact.html#random-variables-and-quasi-borel-kernels
http://localhost:8080/p/poly-artifact.html#fn1
http://localhost:8080/p/poly-artifact.html#fn1
http://localhost:8080/p/poly-artifact.html#fn1

2 Animated and dynamic categories

Using some of the ingredients sketched so far, we can render categories ‘dynamical’.
For our purposes, a systems theory will be an opindexed category defined on a category
of interfaces, which will usually be Poly or another lens category. such as Lens(K).

Thus, the opindexed category Coalg above is a systems theory.

If we have a category enriched in a category of interfaces, we can change its base of
enrichment along a corresponding systems theory, which will yield a bicategory whose
objects are the objects of the starting category, whose 1-cells are dynamical systems
on the ‘hom’ interfaces, and whose 2-cells are the corresponding morphisms of those
systems. This process, of turning a category into a bicategory of dynamical systems, is

what I call animation.

Example 2 (Animating monoidal categories) Given any monoidal category (%, I, ®).
we can write down a corresponding Poly-enriched category €p which has the same
objects as €. Between every pair (A4, B) of objects in ¥, we have a hom polynomial

€ (A, B)y?4) ¥or every triple (A, B, C) of objects. there is a composition morphism
€(B,C)y?"B) @ €(A, B) y? A which acts in the forward direction by composition
and in the backward direction, given (g, f) € €(B,C) x €(A, B) by mapping s : €(I, A)
to (fos,s).

If we choose (Set, 1, x) as our monoidal category, and animate Set p along Coalg. then

we obtain a bicategory whose 1-cells A — B are Mealy machines Sy® — B4y4. 0

Example 3 (Org) Note that Poly itself is Poly-enriched, via its internal hom. Thus,
we can change its base along Coalg, to obtain a bicategory of dynamical systems on

hom polynomials. This bicategory is sometimes known as Org. [

A dynamic category is then a category enriched in the bicategory Org. We can

generalize this using animation.

Definition 4 A generalized dynamic category is a category enriched in a bicategory

resulting from some animation.

Remark. In discussion with Matteo Capucci and Sophie Libkind, it was observed that
every animation yields a monad in Prof (the bicategory of categories and
profunctors). Such monads can be thought of as bidirectional systems theories (and

may be accordingly generalized). Hopefully, other artifacts from the workshop

dicrnicc thic!

https://tsmithe.net/p/animating-cats.html
https://tsmithe.net/p/animating-cats.html
https://tsmithe.net/p/animating-cats.html
https://arxiv.org/abs/2205.03906
https://arxiv.org/abs/2205.03906
https://arxiv.org/abs/2205.03906

ULLOU WO ULLLD.

3 Predictive coding, via animation

It is known that deep learning systems yield dynamic categories (in Org), and
predictive coding feels similar, except that instead of passing forward vectors, one
passes forward ‘beliefs’; and instead of passing backward tangent vectors, one passes

back prediction errors.

It turns out that we can think of predictive coding as a generalized form of deep
learning: but instead of working in Euclidean spaces, we must work with information
geomelry. In this way, we can define a predictive coding dynamic category (in Org, or

perhaps a stochastic variant of it. obtained from Lens(K)).

A dynamic category (really, dynamic ‘operad’) in Org is defined first by a base
polynomial t. In the case of deep learning, this is Ry®, where we think of the exponent

as the tangent space to each point of R.

In the case of predictive coding, we fix a type of belief that the system predicts with:
usually, this is Gaussians (with fixed variance o). Thus, we can define a base

TamGauss(R) The set of tangent vectors Tan,Gauss(R) al a

p()lynomial Z'y:Gauss(R) Y
given Gaussian v with mean p. is the set of functions z — o~ !(u, —) — i.e.. the set of

“precision-weighted” prediction errors. given the prediction p..

With this base polynomial, the dynamic category story for deep learning may be re-
told — but now one obtains predictive coding! There are some details to fix, however,
which we have no space (or time!) to detail here! For example, we need to define a
weakening of the dynamic category structure, in order to incorporate interesting

correlations.

A sketch of this story — and another variant, making use of animation primarily

(rather than dynamic categories) — may be found in the bonus slides of my DPhil viva

presentation.

Footnotes

1. I will ignore size issues here. <

Reuse

https://tsmithe.net/x/viva.pdf#Navigation24
https://tsmithe.net/x/viva.pdf#Navigation24
https://tsmithe.net/x/viva.pdf#Navigation24
https://tsmithe.net/x/viva.pdf#Navigation24
http://localhost:8080/p/poly-artifact.html#footnotes-1
http://localhost:8080/p/poly-artifact.html#fnref1
http://localhost:8080/p/poly-artifact.html#fnref1
http://localhost:8080/p/poly-artifact.html#reuse

