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Terminology

◮ modelling for me is theorizing

◮ I speak of instances of theories rather then models of theories

◮ I speak of data specifications except when I forget and I call them data
models

◮ the act of constructing data specifications is data modelling

◮ a model of data is a meta-theory (a meta-model) describing what
constitutes a data specification. Most significantly there are
◮ relational and
◮ nested relational models of data

◮ the mathematical theory of data is a meta-theory of data that supports
technology independent reasoning about data specifications in all their
forms.



Why?

◮ There are gross inefficiencies in the methodologies and working
practices used in a key activity in s/w systems development and
maintenance namely in the creation and maintenance of specifications
of the data stored in databases and represented in messages variously
intra-communicated between components of systems and
inter-communicated between systems.
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Why?

◮ There are gross inefficiencies in the methodologies and working
practices used in a key activity in s/w systems development and
maintenance namely in the creation and maintenance of specifications
of the data stored in databases and represented in messages variously
intra-communicated between components of systems and
inter-communicated between systems.

◮ These inefficiences have been established and endorsed by a theory
which is grossly inadequate.

◮ A new theory is required to expose and remedy the shortcomings.

◮ The challenge is to positively impact best practice.



Mathematical Theory of Data

◮ is a meta-theory,

◮ it covers principles and criteria for goodness of data specifications,

◮ it reveals the significance of commutative diagrams and therefore
category theory.

◮ The slogan on the tin is Good Data Modelling is Good Theorising.



Prior Theory — 1970 - 1979

◮ In 1970, E.F.Codd introduced the relational model of data and the idea
of normal form.

◮ A year later he defines the term ‘functional dependency’ and uses it to
define ‘third normal form’ (3NF).

◮ In 1977, Fagin defines the concept of a ‘multivalued dependency’ and
uses it to define ‘fourth normal form’ (4NF).

◮ Two years on, Fagin defines ‘projection-join normal form’ which is also
known as ‘fifth normal form’ (5NF).



The success of Codd’s Relational Model of Data

◮ Codd’s model of data has been very influential. Witness that by 2020
Oracle Corporation had grown from being founded in 1977 to having a
42% share of an estimated $30billion market for relational database
technology.

◮ Codd in 1990 says that
The relational model is solidly based on two parts of mathematics:
first-order predicate logic and the theory of relations.

◮ My opinion is that this has been to found data modelling on the wrong
mathematics.

◮ Codd’s mathematical basis and therefore his model do nothing to guide
the programmer as navigator, to use Charles W Bachman’s phrase,

◮ nor do they encourage thinking about navigation path equivalence, i.e.
diagrams that commute ... even though thinking about diagrams that
commute is essential to the goodness of data specifications.

◮ The right mathematical starting point for the theory of data is category
theory.



Goodness Criteria

◮ From a mathematical perspective are not really normal forms!

◮ They are goodness criteria (GC) that articulate good engineering
principles.

◮ I wish to show that we can
◮ genericise relational database normal form criteria into abstract logical

terms,
◮ define goodness criteria that are generic i.e. can be applied to any data

specifications not just to relational schema,
◮ prove that the classic relational database normal form criteria (2NF,

3NF, BCNF, INC-NF, 4NF, 5NF) are consequences of these generic
goodness criteria,

◮ articulate principles from which the generic goodness criteria follow.
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An abstract view

◮ A data specification is a presentation of a theory (of what is).

◮ There can be many different presentations of a single theory and these
have different roles depending on their properties
◮ some presentations are said to be physical — the choice of primitives in

such a presentation is a choice of the individual elements to be
represented in the data,

◮ other presentations are said to be logical — these seek to describe the
data by directly describing its internal relationships.

◮ Both the theory and its logical presentations express the overall
information content of the data independently of the details of its
representation.



Fundamental Principles at this Abstract Level

◮ Principle 1 – absence of redundancy in presentation.

◮ Principle 2 – the theory be the tightest possible fit to the facts.

◮ The two principles collectively
◮ ensure absence of redundancy in data and in data management logic.

◮ Note: principle 2 expresses a kind of logical completeness.



Data Specifications

Two kinds of types in play

◮ the definienda – types all of whose instances are particulars
◮ employee, department, student, account, product, order, shipment,

delivery, flight, booking and so on,
◮ molecular structure, atom, covalent bond, element, isotope, reaction,

metabolite, mass trace, chromatogram, peak.
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Two kinds of types in play

◮ the definienda – types all of whose instances are particulars
◮ employee, department, student, account, product, order, shipment,

delivery, flight, booking and so on,
◮ molecular structure, atom, covalent bond, element, isotope, reaction,

metabolite, mass trace, chromatogram, peak.

◮ the definiens – types all of whose instances are universals
◮ string, integer, float, boolean and so on.

◮ I assume a fixed set V of universals and define data specifications and
instances relative to V .



Data Specifications as Sketches

A data specification is a sketch of

◮ an RR.5 range category,

◮ with designated finite restriction products,

◮ designated monomorphisms with partial inverses,

◮ an object v representing the set V of universals.

Next I go through the background catagory theory that is involved in this
definition.



Mono Sources

In a category C, a source is a family of morphisms with common domain:

a

b1

b2

...

bn

f1

f2

fn

Such a source is said to be a mono source iff for all

g ,h : x → a in C so that x a

b1

b2

...

bn

f1

f2

fn

g

h

in C then if

g ◦ fi = h ◦ fi , for each i , then g = h. OR, in presence of cartesian products,

< f1, ...fn > is a monomorphim.



Category of Sets and Partial Functions

◮ There is a category Par of sets and partial functions.

◮ For a partial function f : A→ B define its restriction idempotent to be
the function f̄ : A→ A is defined by

f̄ (a) =

{
a if f defined at a,

undefined otherwise.

◮ This bar operator satisfies four algebraic identities R.1, R.2, R3, and
R.4.

◮ Also for a partial f : A→ B define its range idempotent to be the
function f̂ : B → B is defined by

f̂ (b) =

{
b if there exists a ∈ A such that f (a) = b,

undefined otherwise.

◮ This hat operator satisfies identities RR.1, ...RR.5.



Restriction Categories I(2002, Cockett and Lack)

A restriction category is a category along with an operator that maps every
morphism f to an idempotent f̄ on its domain satisfying
R.1 For f : a→ b in C

f̄ ◦ f = f

.

R.2. If
b

a
c

f

g

in C then

ḡ ◦ f̄ = f̄ ◦ ḡ .

R.3. If
b

a
c

f

g

in C then

f̄ ◦ g = f̄ ◦ ḡ

.
R.4. If a b c

f g
in C then

f ◦ ḡ = f ◦ g ◦ f

.
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◮ A range category is a restriction category with an additional operator as
follows if f : a→ b in C then f̂ : b → b satisfying

RR.1 For f : a→ b in C, ¯̂f = f̂ .

RR.2 For f : a→ b in C, f ◦ f̂ = f .

RR.3. If a b c
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◮ A range category is a restriction category with an additional operator as
follows if f : a→ b in C then f̂ : b → b satisfying

RR.1 For f : a→ b in C, ¯̂f = f̂ .

RR.2 For f : a→ b in C, f ◦ f̂ = f .

RR.3. If a b c
f g

in C then f̂ ◦ ḡ = f̂ ◦ ḡ .

RR.4. If a b c
f g

in C then ̂(hat(f )◦ g) = f̂ ◦ g .

◮ A range category may additionally satisfy RR.5 if

a b c
g

h

f then f ◦ g = f ◦h⇒ f̂ ◦ g = f̂ ◦h.



Restriction Products

◮ The ususal cartesian product of sets in the category of sets and partial
functions Par does not satisfy the ususal categorical cartesian product
conditions.

◮ In 2006 “Restriction Categories III” Cockett and Lack define the
appropriate notion of product.

◮ They define restriction product of a pair of objects in a restriction
category.



Partial Ordering of Hom(A,B)

◮ In a restriction category we can define a partial ordering on each hom
set Hom(a,b) by defining :

f ≤ g iff f = ḡ ◦ f

,

◮ we can think of f ≤ g as meaning that if f is defined then g is defined
and the two are equal,



Partial Ordering of Hom(A,B)

◮ In a restriction category we can define a partial ordering on each hom
set Hom(a,b) by defining :

f ≤ g iff f = ḡ ◦ f

,

◮ we can think of f ≤ g as meaning that if f is defined then g is defined
and the two are equal,

◮ there are lots of data specifications having near commutative diagrams
i.e. instances of relationships f , g and h satisfying

f ◦ g ≤ h

.



Partial Inverse of a Monomorphism

If m : a→ b is a monomorphim in range category C then a map m−1 : b → a

a b
m

m−1

I will say m−1 is the (partial) inverse of m iff

m ◦m−1 = ida and m−1 ◦m= m̂.



Definition – γ-structured category

I shall use the shorthand γ-structured category to mean a triple 〈C,M ,v〉
where

◮ C is a RR.5 range category with specified finite restriction products,

◮ M is a set of designated monomorphisms of C closed under composition
and such that each m ∈M has a partial inverse m−1,

◮ a distinguished object v , such that every morphism f : v → x in C

factors through m−1, for some monomorphism m.

Note that it follows from this definition that a sketch for a γ-structured
category has no need for edges with domain v .



Data Specification and Data Specification Instance

In this presentation,

◮ by data specification I shall mean a sketch for a γ-structured category
such that the designated object v has no outgoing edges – neither
edges v → v nor edges v → non-v .

◮ If S is a sketch for γ-structured category denote by C(S) the
γ-structured category generated from S .
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In this presentation,

◮ by data specification I shall mean a sketch for a γ-structured category
such that the designated object v has no outgoing edges – neither
edges v → v nor edges v → non-v .

◮ If S is a sketch for γ-structured category denote by C(S) the
γ-structured category generated from S .

◮ Define an instance of a data specification S to be a range functor
F : C(S)→ Par that preserves the specified restriction products and
maps the object v to the set V .

Note that such an F will preserve designated monomorphisms and their
inverses.

I will muddle up data specifications and sketches in these slides.
I will speak of C(S) as the theory category.

Next I want to give some examples to show how all this works in practice.
The very next next example is of the ... relational model of data.



Relational Data

student

sName sDept∗ sSv∗
gray phil #1
bohm maths #1
smith maths #2
doe phil #1
. . . . . . . . .

professor

pDept∗ pId pName

maths #1 scott
maths #2 smith
maths #3 gandy
phil #1 smith
phil #2 ayer
. . . . . . . . .

department

dName dHd∗
maths #3
phil #1
history #5
physics #1
. . . . . .
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◮ rows of the student table reference the department table by virtue of a
column that instances values from the identifying column that table,

student[sDept]⊆ department[dName] ,

◮ similarly, professor [pDept]⊆ department[dName] ,

◮ rows of the student table reference the professor table by virtue of two
columns instancing values from the identifying columns of that table,

student[sDept,sSv ]⊆ professor [pDept,pId ] ,

◮ similarly, department[dName,dHd ]⊆ professor [pDept,pId ] .



Referential Inclusion Dependencies as Range Identities

◮ Now think of each column as a function that maps rows of a table to
values.

◮ Each inclusion dependency can be expressed as identity on the ranges of
these functions.

◮ Each
a[f ]⊆ b[q]

can be represented as
f̂ ≤ q̂ in Par ,

◮ Similarly
a[f1, ...fn]⊆ b[q1, ...qn]

can be represented as

̂〈f1, ...fn〉 ≤ ̂〈q1, ...qn〉 in Par .



Sketch for γ-structured category(Relational)

Directed Graph

student

v v v

sName sDept sSv

professor

v v v

pDept pId pName

department

v v

dName dHd

Mono-sources
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Identities
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̂〈sDept,sSv〉 ≤ ̂〈pDept,pId〉
̂〈dName,dHd〉 ≤ ̂〈pDept,pId〉
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Classifying Data Specifications

data specification

logical physical

relational non-relational

◮ in relational sketches all edges are of the non-v → v type and each such
represents a column of a table/relation,

◮ other physical sketches (non-relational) in addition to the non-v → v
type edges have edges of the non-v → non-v type and these represent
structural containment,

◮ non-relational physical data specifications are also said to be
hierarchical.



Characterisation of Relational Data Specifications

Definition

A data specification is relational iff

◮ all edges are of the non-v → v type,

◮ every non-v-node is the domain of at least one v-valued mono-source
i.e. for every non-v-node a, for some n ≥ 1, there exists a source

v

v
a ...

v

m1

m2

mn

which is designated as a mono-source i.e. for which 〈m1, ...mn〉 is a
designated monomorphism.



Construction – Transform a Relational Sketch to a Logical

Sketch

Lemma

For any classic relational data specification there is an equivalent data
specification (i.e. one with the same theory category) which is logical.

Proof.

In outline: We construct a series of equivalent sketches by eliminating each
inclusion dependency in turn. When all eliminated the resulting sketch is the
required logical sketch. Eliminate the inclusion dependency
a[f1, ...fn]⊆ b[m1, ...mn] as follows:

◮ remove the inclusion dependency,

◮ replace by an edge f : a→ b,

◮ remove those fi that are edges and rewrite any occurrence of such fi in
the remaining inclusion dependencies by f ◦mi ,

◮ for those fi that are not edges add a path equivalence (i.e. a
commuting diagram) f ◦mi = fi .



Example — Transform Relational Sketch to Logical Sketch
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◮ student[sDept,sSv ]⊆ professor [pDept,pId ]

◮ department[dName,dHd ]⊆ professor [pDept,pId ]

Step 1. Eliminate student[sDept] ⊆ department[dName]

Remove sDept and replace by an edge d : student → department. Rewrite
appearances of sDept in the sketch by d ◦dName.
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student professor

department

s

d ′d .
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Step 4. Eliminate this final inclusion dependency.
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Example — Transform Relational Sketch to Logical Sketch
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v
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v v

pId pName
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d

s d ′

subject to commutivity of

department

student professor

d
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d ′
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department
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d ′ h

id



Resulting Logical Data Specification

department

student professor v

dName
h

d

sName

s

d ′
pId

pName

subject to commutivity of

department

student professor

d

s

d ′

and

department

professor professor

d ′ h

id



Characterisation of Logical Data Specification

Definition

A data specification S is logical iff

◮ there does not exist an edge e of the sketch S for which there is a
decomposition in the theory category C(S) i.e. such that for some
morphisms f1 and f2 distinct from e, e = f1 ◦ f2.



Best Practice – Structured Systems Analysis and Design

Current Best Practice

logical
data
specification

Chen’s 1976
transform
(automated)
==========⇒

relational
data
specification

normalise
a la Codd
(manual)
==========⇒

relational
data
specification



Chen’s Transformation 1976

Construction

From a logical data specification construct a relational data specification .

Chen’s 1976 Method Replace f : a→ b in the sketch by edges f1, ...fn
where m1, ...mn is a v-valued mono-source with domain b and add inclusion
dependency a[f1, ...fn]⊆ b[m1, ...mn].



Chen’s Transformation 1976

Construction

From a logical data specification construct a relational data specification .

Chen’s 1976 Method Replace f : a→ b in the sketch by edges f1, ...fn
where m1, ...mn is a v-valued mono-source with domain b and add inclusion
dependency a[f1, ...fn]⊆ b[m1, ...mn].
Problem with this method

◮ Doesn’t take account of commutative diagrams,
◮ therefore resulting relational specification

◮ doesn’t have equivalent theory category,
◮ often is not be in normal form.

◮ This weakness negatively impacts how data specifications are written
and maintained.



Chen’s Transformation 1976 made diagram aware

Construction

with the same theory category
From a logical data specification construct a relational data specification⋋.

Chen’s 1976 Method Replace f : a→ b in the sketch by edges f1, ...fn
where m1, ...mn is a v-valued mono-source with domain b and add inclusion
dependency a[f1, ...fn]⊆ b[m1, ...mn].
Problem with this method

◮ Doesn’t take account of commutative diagrams,
◮ therefore resulting relational specification

◮ doesn’t have equivalent theory category,
◮ often is not be in normal form.

◮ This weakness negatively impacts how data specifications are written
and maintained.

Mission

◮ Theoretically justify an improved algorithm, i.e. one that takes account
of commutative diagrams, and thereby change how data specifications
are managed and databases are programmed.



Revised Best Practice

logical
data
specification

diagram
aware
transformation
(automated)
==========⇒

relational
data
specification

Such that

◮ If appropriate goodness criteria met by the logical specification then the
relational specification meets the classic relational goodness criteria.

Impact

◮ No manual normalisation process.

◮ No source code required to describe the physical level.



Nested Relational Data – Same information as before.

department

name hd
student

name svr

professor

no name

maths #3
bohm #1
smith #2

#1 scott
#2 smith
#3 gandy

phil #1
gray #1
doe #1

#1 smith
#2 ayer

history #5 . . . . . .

physics #1 . . . . . .

student[..,svr ]⊆ professor [..,pId ]

department[identity ,hd ]⊆ professor [..,pId ]



Nested Relational Data – Same information as before.

department

name hd
student

name svr

professor

no name

maths #3
bohm #1
smith #2

#1 scott
#2 smith
#3 gandy

phil #1
gray #1
doe #1

#1 smith
#2 ayer

history #5 . . . . . .

physics #1 . . . . . .

what we see here – a combination of
◮ structural containment

◮ relational referencing.



Nested Relational Data – Same information as before.

department

name hd
student

name svr

professor

no name

maths #3
bohm #1
smith #2

#1 scott
#2 smith
#3 gandy

phil #1
gray #1
doe #1

#1 smith
#2 ayer

history #5 . . . . . .

physics #1 . . . . . .

this is all there is
◮ the sole mechanisms for representing internal relationships in data are

◮ structural containment
◮ relational referencing.

◮ ∴ all data can be viewed abstractly as nested relational,



Hierarchical Data Specification Sketch

department
v

v

student professor

v v v v

dName

dHd

d

sName sSv

d ′

pId pName

student[d ,svr ]⊆ professor [d ′
,no]

department[identity ,hd ]⊆ professor [d ′
,no]



Characterisation of Physical Data Specification

Definition

A data specification is physical iff

◮ every non-v-node is the domain of at most one edge of the
non-v → non-v type.

In a physical data specification every node and every edge has physical
significance in the database or message structure.

◮ Nodes other than v in a physical data specification represent entity
types (ER-notation) or tables (relational) or structs (IDL) or similar.

◮ Edges of the non-v → non-v type represent those relationships in the
data that are physically represented by structural containment.

◮ Remaining edges (i.e. those of the non-v → v type) represent attributes
(ER) or columns of tables (relational) or scalar fields within structs
(IDL) or such like.



Subtle annotation of the logical sketch.

department

student professor v

dName
h

d

sName

s

d ′ pId

pName

subject to commutivity of

department

student professor

d

s

d ′
and

department

professor professor

d ′ h

id



Subtle annotation of the logical sketch.

department

student professor v

dName
h

d

sName

s

d ′ pId

pName

subject to commutivity of

department

student professor

d

s

d ′
and

department

professor professor

d ′ h

id

d ∈ department,x ∈ student(d) ⊢ s(x) ∈ professor(d)
and d ∈ department ⊢ h(d) ∈ professor(d)



Example – LCMSMS Data

task

task
�hostnameOfLabsysAppServer

�tasknumber
�SOPnumber
�procedurename

�location

revised labsys task
�hostnameOfLabsysAppServer

�tasknumber

nor in rng or ts.

sample group
�alphacode

test sample group shared sample group

MSMS component
�compoundid

sample
�sampleid

�isRTreferencepeak

required MSMS data
�compoundid

chromatogram tower

data collection
�samplelistname

�instrumentname
�instrumenttype
�chromatography
�collectiontimestamp
 labsyssubmissionid

sample group(2)
�methodfilename

injection(2)
�fullsampleid
�samplename
�sampletype

�rawdatafilename
�drawerposition
�wellposition
�timestamp

compound(2)

trace(2)
�trace

component(2)

chromatogram
�extractiontimestamp

�extractioneventno
�timeintensitydata

instrument extraction details

xevo extraction details
�xevofunctionno
�xevocompoundno

ab6600 extraction details
�sampleno
�periodno
�experimentno
�numberofdatapoints

step size specification
�startpointno

�stepsize
�changepointno

interpretation tower

interpretation session
�sessionguid

interpretation event
�dateTimeOpened
 dateTimeSaved
 dateTimeSubmitted

programmed interpretation event
�programname

user interpretation event
�username

sample group(3)

injection(3)

compound(3)

trace(3)

component(3)

chromatogram(2)

annotation
�text

reject this data comment

method
�methodname

param
�name

�value

timepoint
�time
�rawintensity
�smoothedintensity

peak
�RT
�peakArea
�peakHeight
�chromatogramNoise

�startRT
�endRT
�startHght
�endHght
�peakWidthHalfHeight
�peakSkew

selected peak

candidate peak

status
�timestamp

submit
to

revised
in

˜/ˆ=ˆ

..

..

..

..

..

..

group

RT
reference

˜/..=.

..

subject

˜/..=../group

..

subject˜/..=../group IS ˜/..=..

..

monitored

˜/..=../..

extracted

˜/..=../monitored

..

..

..

base
event session

˜/..=base

base
session

˜/ˆ=ˆ

subject˜/ˆ=ˆ

..

..

subject˜/..=../subject

RT
reference

˜/..=.

based
on

event
˜/..=../base

..

subject

˜/..=../subject

based
on

on
˜/..=../based

..

subject˜/..=../subject IS
˜/..=..

selected

˜/..=.
subject˜/..=../subject

..

subject˜/..=../subject
monitored

˜/..=../..

based
on on
˜/..=../based

time
series

..

..

..

..

subject
˜/..=../subject

extracted

chromatograms

˜/..=../monitored

based
on

on
˜/..=../based

last
modified

˜/ˆ=ˆ

previous
on

˜/..=../based

method

˜/..=../../../../..

last
reviewed

˜/ˆ=ˆ

last
modified

˜/ˆ=ˆ

previous on
˜/..=../based
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task
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�tasknumber
�SOPnumber
�procedurename

�location

revised labsys task
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step size specification
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interpretation tower

interpretation session
�sessionguid

interpretation event
�dateTimeOpened
 dateTimeSaved
 dateTimeSubmitted

programmed interpretation event
�programname

user interpretation event
�username

sample group(3)

injection(3)

compound(3)

trace(3)

component(3)

chromatogram(2)

annotation
�text

reject this data comment

method
�methodname

param
�name

�value

timepoint
�time
�rawintensity
�smoothedintensity

peak
�RT
�peakArea
�peakHeight
�chromatogramNoise

�startRT
�endRT
�startHght
�endHght
�peakWidthHalfHeight
�peakSkew

selected peak

candidate peak

status
�timestamp

submit
to

revised
in

˜/ˆ=ˆ

..

..

..

..

..

..

group

RT
reference

˜/..=.

..

subject

˜/..=../group

..

subject˜/..=../group IS ˜/..=..

..

monitored

˜/..=../..

extracted

˜/..=../monitored

..

..

..

base
event session

˜/..=base

base
session

˜/ˆ=ˆ

subject˜/ˆ=ˆ

..

..

subject˜/..=../subject

RT
reference

˜/..=.

based
on

event
˜/..=../base

..

subject

˜/..=../subject

based
on

on
˜/..=../based

..

subject˜/..=../subject IS
˜/..=..

selected

˜/..=.
subject˜/..=../subject

..

subject˜/..=../subject
monitored

˜/..=../..

based
on on
˜/..=../based

time
series

..

..

..

..

subject
˜/..=../subject

extracted

chromatograms

˜/..=../monitored

based
on

on
˜/..=../based

last
modified

˜/ˆ=ˆ

previous
on

˜/..=../based

method

˜/..=../../../../..

last
reviewed

˜/ˆ=ˆ

last
modified

˜/ˆ=ˆ

previous on
˜/..=../based

This example has

◮ 33 relationships implemented by structural containment,

◮ 26 relationships implemented by relational referencing (inclusion
depedencies),
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�tasknumber
�SOPnumber
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�xevofunctionno
�xevocompoundno

ab6600 extraction details
�sampleno
�periodno
�experimentno
�numberofdatapoints

step size specification
�startpointno

�stepsize
�changepointno

interpretation tower

interpretation session
�sessionguid

interpretation event
�dateTimeOpened
 dateTimeSaved
 dateTimeSubmitted
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injection(3)
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..
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event session
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˜/..=..
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˜/..=.
subject˜/..=../subject
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on on
˜/..=../based

time
series

..

..

..

..

subject
˜/..=../subject
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˜/..=../monitored
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modified

˜/ˆ=ˆ

previous
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method
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˜/ˆ=ˆ

previous on
˜/..=../based

This example has

◮ 33 relationships implemented by structural containment,

◮ 26 relationships implemented by relational referencing (inclusion
depedencies),

◮ 16 non-trivial commutative diagrams,
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�hostnameOfLabsysAppServer

�tasknumber
�SOPnumber
�procedurename

�location

revised labsys task
�hostnameOfLabsysAppServer

�tasknumber

nor in rng or ts.

sample group
�alphacode

test sample group shared sample group

MSMS component
�compoundid

sample
�sampleid

�isRTreferencepeak

required MSMS data
�compoundid

chromatogram tower

data collection
�samplelistname

�instrumentname
�instrumenttype
�chromatography
�collectiontimestamp
 labsyssubmissionid

sample group(2)
�methodfilename

injection(2)
�fullsampleid
�samplename
�sampletype

�rawdatafilename
�drawerposition
�wellposition
�timestamp

compound(2)

trace(2)
�trace

component(2)

chromatogram
�extractiontimestamp

�extractioneventno
�timeintensitydata

instrument extraction details

xevo extraction details
�xevofunctionno
�xevocompoundno

ab6600 extraction details
�sampleno
�periodno
�experimentno
�numberofdatapoints

step size specification
�startpointno

�stepsize
�changepointno

interpretation tower

interpretation session
�sessionguid

interpretation event
�dateTimeOpened
 dateTimeSaved
 dateTimeSubmitted

programmed interpretation event
�programname

user interpretation event
�username

sample group(3)

injection(3)

compound(3)

trace(3)

component(3)

chromatogram(2)

annotation
�text

reject this data comment

method
�methodname

param
�name

�value

timepoint
�time
�rawintensity
�smoothedintensity

peak
�RT
�peakArea
�peakHeight
�chromatogramNoise

�startRT
�endRT
�startHght
�endHght
�peakWidthHalfHeight
�peakSkew

selected peak

candidate peak

status
�timestamp

submit
to

revised
in

˜/ˆ=ˆ

..

..

..

..

..

..

group

RT
reference

˜/..=.

..

subject

˜/..=../group

..

subject˜/..=../group IS ˜/..=..

..

monitored

˜/..=../..

extracted

˜/..=../monitored

..

..

..

base
event session

˜/..=base

base
session

˜/ˆ=ˆ

subject˜/ˆ=ˆ

..

..

subject˜/..=../subject

RT
reference

˜/..=.

based
on

event
˜/..=../base

..

subject

˜/..=../subject

based
on

on
˜/..=../based

..

subject˜/..=../subject IS
˜/..=..

selected

˜/..=.
subject˜/..=../subject

..

subject˜/..=../subject
monitored

˜/..=../..

based
on on
˜/..=../based

time
series

..

..

..

..

subject
˜/..=../subject

extracted

chromatograms

˜/..=../monitored

based
on

on
˜/..=../based

last
modified

˜/ˆ=ˆ

previous
on

˜/..=../based

method

˜/..=../../../../..

last
reviewed

˜/ˆ=ˆ

last
modified

˜/ˆ=ˆ

previous on
˜/..=../based

This example has

◮ 33 relationships implemented by structural containment,

◮ 26 relationships implemented by relational referencing (inclusion
depedencies),

◮ 16 non-trivial commutative diagrams,

◮ 6 pullback diagrams.

Generated into code in XML, ECMA Javascript and Python.



Data Specification Instances and Requirements

◮ A data specification is a sketch S for a γ-structured category C(S).

◮ An instance of a data specification S is a structure preserving functor
D : C(S)→ Par.

◮ A requirement for a data specification S is a set of such instances i.e. is
a set RC of structure preserving functors where for each D ∈ RC ,
D : C(S)→ Par.



Fundamental Principles of Data Specification

If S is a sketch for γ-structured category C and if S is considered as a data
specification with requirement RC

◮ Principle 1 : No redundancy. The sketch S ought to be a minimum
sketch for structured category C i.e. there should be no subsketch of S
which generates C.

◮ Principle 2: C ought to be maximally constrained to RC. When
defined, this will be the most fundamental way of saying that C is a
tightest fit to the facts RC.



Representational Completeness — Goodness Critera

Another way of approaching tightest fit:

◮ That which is in the requirement and can be represented in the theory
should be represented in the theory.



Representational Completeness — Goodness Critera

Another way of approaching tightest fit:

◮ That which is in the requirement and can be represented in the theory
should be represented in the theory.

◮ To make precise we can give definitions of representational
completeness wrt RC

Goodness Criteria 2A. equational completeness,
Goodness Criteria 2B. functional completeness,
Goodness Criteria 2C. referential completeness,

and others beside.



Representational Completeness — Goodness Critera

Another way of approaching tightest fit:

◮ That which is in the requirement and can be represented in the theory
should be represented in the theory.

◮ To make precise we can give definitions of representational
completeness wrt RC

Goodness Criteria 2A. equational completeness,
Goodness Criteria 2B. functional completeness,
Goodness Criteria 2C. referential completeness,

and others beside.

◮ In these definitions that C is x complete wrt RC will mean exactly that
the set of instances RC are jointly reflective of x .



Equational Completeness — Goodness Criteria 2A



Equational Completeness — Goodness Criteria 2A

Definition

If C is a γ-structured category and RC is a set of instances, then say that C
is equationally complete with respect to the requirement RC iff all path
equivalences with respect to RC are represented in C i.e. iff for all diagrams

a b
f

g
in C, if in all instances D ∈ RC, D(f ) = D(g), then f = g .

In other words,

◮ loosely speaking ... if f = g in all data instances then f = g ,

◮ or...the set of functors RC is jointly faithful.



Equational Completeness — Goodness Criteria 2A

Definition

If C is a γ-structured category and RC is a set of instances, then say that C
is equationally complete with respect to the requirement RC iff all path
equivalences with respect to RC are represented in C i.e. iff for all diagrams

a b
f

g
in C, if in all instances D ∈ RC, D(f ) = D(g), then f = g .

In other words,

◮ loosely speaking ... if f = g in all data instances then f = g ,

◮ or...the set of functors RC is jointly faithful.

Goodness Criteria 2A: If S is a sketch for γ-structured category C

considered as a data specification with requirement RC then C ought to be
equationally complete with respect to RC .



Functional Dependencies — Goodness Criteria 2B

To describe Goodness Criteria 2B I first need to

◮ Define what we mean by functional dependency – abstracted and
simplified from definition given by Codd 1971.

◮ Define what we mean by a functional dependency being represented –
inspired by language found in Zaniolo 1982.

◮ State as the criteria that all functional dependencies ought to be
represented – the spirit of Zaniolo’s paper.



Definition of Functional Dependency

Definition

If C is a γ-structured category and RC is a set of instances and if
b

a
c

f

g

in C then there is a functional dependency of g on f with

respect to RC iff there is a family of functions HD)D∈RC
such that in each

instance D, HD is a partial function HD : D(b)→ D(c), such that both

HD = D̂(f )

and
D(f )◦HD = D(g).

◮ HD will be the unique such partial function (this follows from RR.5),



Definition of Functional Dependency

Definition

If C is a γ-structured category and RC is a set of instances and if
b

a
c

f

g

in C then there is a functional dependency of g on f with

respect to RC iff there is a family of functions HD)D∈RC
such that in each

instance D, HD is a partial function HD : D(b)→ D(c), such that both

HD = D̂(f )

and
D(f )◦HD = D(g).

◮ HD will be the unique such partial function (this follows from RR.5),

◮ If H is such a functional dependency then we say that f
H
−→ g in C with

respect to RC.



Functional Dependencies — Goodness Criteria 2B

Definition

If C is a γ-structured category and RC is a set of instances, if
b

a
c

f

g

in C and if there is a functional dependency f
H
−→ g then say

that the functional dependency H is represented in C iff there exists a
morphism h : b → c in C such that D(h) = HD .



Functional Dependencies — Goodness Criteria 2B

Definition

If C is a γ-structured category and RC is a set of instances, if
b

a
c

f

g

in C and if there is a functional dependency f
H
−→ g then say

that the functional dependency H is represented in C iff there exists a
morphism h : b → c in C such that D(h) = HD .

If C is a γ-structured category and RC a set of instances then C is said to be
functionally complete with respect to RC iff every functional dependency
present in RC is represented in C. Loosely speaking ... whenever g factors
through f in every data instance then g should factor through f .



Functional Dependencies — Goodness Criteria 2B

Definition

If C is a γ-structured category and RC is a set of instances, if
b

a
c

f

g

in C and if there is a functional dependency f
H
−→ g then say

that the functional dependency H is represented in C iff there exists a
morphism h : b → c in C such that D(h) = HD .

If C is a γ-structured category and RC a set of instances then C is said to be
functionally complete with respect to RC iff every functional dependency
present in RC is represented in C. Loosely speaking ... whenever g factors
through f in every data instance then g should factor through f .

Goodness Criteria 2B: If S is a sketch for γ-structured category C

considered as a data specification with requirement RC then C ought to be
functionally complete with respect to RC.



Definition of Inclusion Dependencies

If C is a γ-structured category and RC is a set of instances and if
bi

a c

fi qi
in C, for i , 1≤ i ≤ n, then an inclusion dependency

J, written a[f1, ...fn]
J
⊆ c[q1, ..qn], is a family of functions JD)D∈RC

such that
each instance D ∈ RC, JD : D(a)→D(c) is a partial function (so that we

have this diagram in Par

D(bi )

D(a) D(c)

D(fi ) D(qi )

JD

) and JD

satisfies
JD = 〈D(f1), ...D(fn)〉 (1)

and, for each i , 1≤ i ≤ n,

JD ◦D(qi) = (JD)◦D(fi ) (2)

or, equivalent to (2) in the presence of (1):

JD ◦ 〈D(q1), ...D(qn)〉= 〈D(f1), ...D(fn)〉 (3)

◮ If each JD is the unique such function then the inclusion dependency is
said to be referential.



Referential Completeness and Goodness Criteria 2C

Definition

If C is a category and RC is a set of instances and if

b1

a c

bn

f1 q1

fn qn

in

C and if a[f1, ...fn]
J
⊆ c[q1, ..qn] is a referential inclusion dependency with

respect to RC then say that the inclusion dependency J is represented in C

iff there exists a morphism j : a→ c in C such that in each instance D ∈ RC,
D(j) = JD .

If C is a category and RC a set of instances then C is referentially complete
with respect to RC iff all referential inclusion dependencies present in RC are
represented in C.
Goodness Criteria 2C: If S is a sketch for γ-structured category C

considered as a data specification with requirement RC then C ought to be
referentially complete with respect to RC.



BCNF in the abstract (based on Zaniolo 1982 Definition 2)

If S is a simple relational sketch for a γ-structured category C and S is
considered as a data specification with requirement RC, then it ought to be

the case that if a

b1

b2
...
bn

c

x1

x2

xn

y

are edges of S and if

{x1, ...xn}→ y is a non-trivial functional dependency between these edges



BCNF in the abstract (based on Zaniolo 1982 Definition 2)

If S is a simple relational sketch for a γ-structured category C and S is
considered as a data specification with requirement RC, then it ought to be

the case that if a

b1

b2
...
bn

c

x1

x2

xn

y

are edges of S and if

{x1, ...xn}→ y is a non-trivial functional dependency between these edges

then a

b1

b2

...

bn

x1

x2

xn

is a designated mono-source.



Deriving the classic normal form criteria

Lemma

(i) For a simple relational data specification S with requirement RC, if S
meets the minimality condition (principle 1) and C(S) meets the
goodness condition 2B then S meets the condtions of Codd’s third
normal form.

(ii) In addition to (i), if for each designated mono-source <m1, ...mn > of
the associated logical sketch, each mi is an edge then the data
specification S meets the conditions of Boyce-Codd normal form
(BCNF).

(iii) In addition to (i), if we follow principle 1 and do not introduce limits

into a sketch needlessly then the data specification S meets the
fourth and fifth normal form criteria of Fagin.



Deriving the classic normal form criteria

Lemma

(i) For a simple relational data specification S with requirement RC, if S
meets the minimality condition (principle 1) and C(S) meets the
goodness condition 2B then S meets the condtions of Codd’s third
normal form.

(ii) In addition to (i), if for each designated mono-source <m1, ...mn > of
the associated logical sketch, each mi is an edge then the data
specification S meets the conditions of Boyce-Codd normal form
(BCNF).

(iii) In addition to (i), if we follow principle 1 and do not introduce limits

into a sketch needlessly then the data specification S meets the
fourth and fifth normal form criteria of Fagin.

Significance

We have defined criteria which are generic in the sense that they apply to
any kind of data specification. They genericise the classic relational normal
form criteria.



Definition: C maximally constrained to RC

◮ Question – is there a C’ that extends C and that will do a better job.

◮ Is there a C’ and an I : C→ C’ such that all instances in the
requirement RC uniquely factor though I

C ′

Par

C

D
I

D ′

and at least one other instance F of C does not factor through I .

F



Definition: C maximally constrained to RC

◮ Question – is there a C’ that extends C and that will do a better job.

◮ Is there a C’ and an I : C→ C’ such that all instances in the
requirement RC uniquely factor though I

C ′

Par

C

D
I

D ′

and at least one other instance F of C does not factor through I .

F

If there is no such I : C→ C’ then we shall say that C is maximally
constrained with respect to RC.

...meaning that structured category C is the tightest possible fit to facts i.e.
to the requirement RC.



Principles imply specific criteria



Principles imply specific criteria

◮ We would like to show (the grand plan) that sketch S meets Principle 1
(minimality of the sketch) and if C(S) meets Principle 2 (that it should
be maximally constrained) then it also meets specific representational
completeness criteria 2A, 2B, 2C and so on.



Principles imply specific criteria

◮ We would like to show (the grand plan) that sketch S meets Principle 1
(minimality of the sketch) and if C(S) meets Principle 2 (that it should
be maximally constrained) then it also meets specific representational
completeness criteria 2A, 2B, 2C and so on.

◮ If we can get to this then we have fundamental principles which are
both generic across all kinds of data specifications and which imply the
specific representation completeness criteria which in turn imply the
classic relational normal forms.



Revised Best Practice

logical
data
specification

diagram
aware
transformation
(automated)
==========⇒

relational
data
specification

Such that

◮ If appropriate goodness criteria met by the logical specification then the
relational specification meets the classic relational goodness criteria.

Impact

◮ No manual normalisation process.

◮ No source code required to describe the physical level.


