Cauchy Completeness and Adjoints in Double Categories

Susan Niefield

Union College Schenectady, NY

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation

1. Lawvere (1973): Cauchy completeness by considering a (generalized) metric space as a category enriched in $[0, \infty]$.

2. Paré (2021): Cauchy completeness in double categories, and showed an (S, R)-modules M has a right adjoint in \mathbb{R} ing of commutative rings iff it is finitely generated and projective over S.

3. N./Wood (2017): $-\otimes_S M$ on S-Mod has a left adjoint iff M is fg projective over S, for commutative rings, rigs, (and quantales).

Goals:

- More examples in double categories (Loc, Topos, Top, Quant).
- Remove commutativity from 3. and relate it directly to 2.

Double Categories

A double category $\mathbb D$ is a pseudo internal category in CAT

$$\mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \xrightarrow{\bullet} \mathbb{D}_1 \xrightarrow{s \\ \underbrace{\leftarrow \mathrm{id} \bullet}_{t} \\ t} \mathbb{D}_0$$

Objects X of \mathbb{D}_0 , called objects of \mathbb{D}

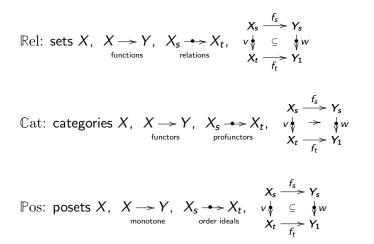
Morphisms $X \xrightarrow{f} Y$ of \mathbb{D}_0 , called horizontal morphisms of \mathbb{D}

Objects $X_s \xrightarrow{\nu} X_t$ of \mathbb{D}_1 , called vertical morphism of \mathbb{D}

 $\begin{array}{ll} X_s \xrightarrow{f_s} Y_s \\ \text{Morphisms} & v_{\psi}^{\dagger} & \varphi & \psi_w \text{ of } \mathbb{D}_1, \text{ called cells of } \mathbb{D} \\ & X_t \xrightarrow{f_t} Y_t \end{array}$

A cell is special if f_s and f_t are identity morphisms. The vertical morphisms and special cells form a bicategory denoted by $Vert(\mathbb{D})$.

Examples



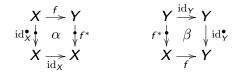
Met: \mathcal{V} -Cat for $\mathcal{V} = [0, \infty]$, Lawvere metric spaces

Companions and Conjoints

A companion for $X \xrightarrow{f} Y$ is a vertical morphism $X \xrightarrow{f_*} Y$ and cells

whose horizontal and vertical compositions are identities.

A conjoint for f is a vertical morphism $Y \xrightarrow{f^*} X$ and cells



Note: Rel, Cat, Pos, and Met have all companions and conjoints.

Cauchy Completeness

Proposition

If f has a companion and conjoint, then $f_* \dashv f^*$ in $Vert(\mathbb{D})$.

Definition

An object Y of \mathbb{D} is Cauchy complete if every left adjoint vertical morphism $v: X \dashrightarrow Y$ is the companion of some $f: X \longrightarrow Y$.

Exercise

Every set Y is Cauchy complete in $\mathbb{R}el$.

Remark

Cauchy completeness was considered in the 70s and 80s for metric spaces, categories, and posets (see Borceux/Dejean).

Locales

Companions and conjoints played a role in a double category construction [N 2012] of exponentials of locally closed inclusions for locales, toposes, and topological spaces using Artin-Wraith glueing.

$$\mathbb{L}\text{oc: locales } X, \quad X \xrightarrow{f} Y, \quad X_s \xrightarrow{f} X_t, \quad v \oint \geq \psi w$$

$$\lim_{\text{locale maps}} Y, \quad X_s \xrightarrow{f} X_t, \quad v \oint \geq \psi w$$

$$X_t \xrightarrow{f_t} Y_t$$

Note: A "locale map" f has a finite \wedge -preserving left adjoint f^* .

Proposition

Every locale is Cauchy complete in Loc.

Proof.

Suppose $v: X \dashrightarrow Y$ is left adjoint to $w: Y \dashrightarrow X$ in Loc. Then $vw \ge id_Y^{\bullet}$ and $id_X^{\bullet} \ge wv$, and so $w \dashv v$ as poset maps. Since v preserves finite meets, it follows that v is a locale morphism such that $v_* = v$ in Loc.

Toposes

Note: A "geometric morphism" f has a left exact left adjoint f^* .

Proposition

Every topos is Cauchy complete in Topos.

Proof.

Suppose $v \dashv w$ in Topos. Then we have cells $vw \twoheadleftarrow id_Y^{\bullet}$ and $id_X^{\bullet} \twoheadleftarrow wv$, satisfying the adjunction identities, and so $w \dashv v$ as functors. Since v preserves finite limits, it follows that v is a geometric morphism such that $v_* = v$ in Topos.

Topological Spaces

$$\mathbb{T} \text{op: top spaces } X, \quad X \longrightarrow Y, \quad \underbrace{X_s \longrightarrow X_t}_{\text{cont maps}}, \quad \underbrace{X_s \longrightarrow X_t}_{\text{lex}}, \quad \begin{array}{c} \mathcal{O}(X_s) \xrightarrow{\mathcal{O}(f_s)} \mathcal{O}(Y_s) \\ \psi \downarrow \quad \supseteq \quad \psi w \\ \mathcal{O}(X_t) \xrightarrow{\mathcal{O}(f_t)} \mathcal{O}(Y_t) \end{array}$$

Recall [PTJ] a space Y is sober iff morphisms $f: \mathcal{O}(X) \rightarrow \mathcal{O}(Y)$ of locales correspond bijectively to continuous maps $f: X \rightarrow Y$.

Proposition

A space Y is Cauchy complete in Top iff it is a sober space.

Proof.

Left adjoints $X \dashrightarrow Y$ in \mathbb{T} op are the left adjoints $\mathcal{O}(X) \dashrightarrow \mathcal{O}(Y)$ in \mathbb{L} oc, and so Y is Cauchy complete in \mathbb{T} op iff it is sober. \Box

Quantales

Quant: quantales X,
$$X \xrightarrow{f} Y$$
, $X_s \xrightarrow{v} X_t$, $v \notin A_t$.
Note: v is monotone with $v(x)v(x') \le v(xx')$ and $e \le v(e)$.

. . . .

Proposition

Every quantale Y is Cauchy complete in \mathbb{Q} uant.

Proof.

Suppose $v \dashv w$ in Quant, where $X \stackrel{v}{\dashrightarrow} Y$. Since v is lax and preserves \bigvee , to see it is a quantale morphism, it suffices to show $v(e_X) \leq e_Y$ and $v(xx') \leq v(x)v(x')$. But, $e_X \leq w(e_Y)$ and

$$xx' \leq wv(x)wv(x') \leq w(v(x)v(x'))$$

Thus, Y is Cauchy complete in \mathbb{Q} uant.

Adjoints in Double Categories

Suppose ${\cal V}$ is a bicomplete symmetric monoidal closed category, and consider the double category of monoids in ${\cal V}$

$$\mathbb{Bim}(\mathcal{V}): \text{ monoids } R \text{ , } R \xrightarrow{f} S, R_s \xrightarrow{M} R_t, M_{\clubsuit} \xrightarrow{R_s} S_s$$
$$\underset{(R_t, R_s) \text{-bimods}}{\overset{(R_t, R_s) \text{-$$

Given an (S, R)-module M, there is a functor

$$M\otimes_R-:(R,Q)\operatorname{\!-Mod}\nolimits\longrightarrow(S,Q)\operatorname{\!-Mod}\nolimits$$

which has a right adjoint

$$SMod(M, -): (S, Q)-Mod \longrightarrow (R, Q)-Mod$$

For commutative rings, $M \otimes_R -$ has a left adjoint iff M is fg projective as an R-module. Can we relate this to right adjoints to $M: R \rightarrow S$? What about rigs/quantales? Non-commutative case?

Adjoints in Double Categories

Theorem TFAE for $M: R \rightarrow S$ with S-presentation $\sqcup_{\alpha} S \rightrightarrows \sqcup_{\beta} S \rightarrow M$. (a) $M: R \rightarrow S$ has a right adjoint in $\mathbb{B}im(\mathcal{V})$. (b) (Q, S)-Mod $(\mathcal{V}) \xrightarrow{-\otimes_S M} (Q, R)$ -Mod (\mathcal{V}) has a left adjoint, $\forall Q$. (c) (Q, S)-Mod $(\mathcal{V}) \xrightarrow{-\otimes_S M} (Q, R)$ -Mod (\mathcal{V}) preserves limits. (d) $SMod(M, S) \otimes_{S} M \xrightarrow{\theta} SMod(M, M)$ is invertible. Note: $(b) \Rightarrow (c) \Rightarrow (d)$ is like [NW]; can prove $(d) \Rightarrow (a) \Rightarrow (b)$. Corollary TFAE for an (S, R)-module M over quantales (resp., rings, rigs).

(a)
$$M: R \rightarrow S$$
 has a right adjoint in \mathbb{B} im.

(b) $-\otimes_S M$ has a left adjoint.

(c) M is (resp., fg) projective as an S-module.

Note: One can prove (c) iff θ is an invertible.

References

- Borceux and Dejean, Cauchy completion in category theory, Cahiers 27 (1986), 133–146.
- ► Johnstone, Stone Spaces, Cambridge University Press, 1982.
- Lawvere, Metric spaces, generalized logic, and closed categories, Rend del Sem. XLIII (1973); TAC Reprints 1 (2002), 1–37.
- Niefield and Wood, Coexponentiability and projectivity: rigs, rings, and quantales, TAC 32 (2017), 1222–1228.
- Niefield, The glueing construction and double categories, JPAA 216 (2012), 1827–1836.
- Paré, Morphisms of rings, Outstanding Contributions to Logic 20, Springer (2021), 271–298.