Free bicompletion of categories revisited (Part 1)

André Joyal

Université du Québec à Montréal (UQÀM)

Topos Institute Colloquium (14/2/2024)

(ロ) (御) (君) (君) (君) 君 のぬの

Abstract

Whitman's theory of free lattices can be extended to lattices enriched over a quantale, to bicomplet categories, and also to bicomplete ∞ -categories. It has applications to the semantic of linear logic [HJ1][HJ2].

My goal here is to introduce a few basic ideas of the theory of free bicomplete categories.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Apology

For 25 years, I have been promising to many people a draft of my paper on free bicompletion of categories. I apologise for been so late delivering. I am presently writing that draft, and I plan to finish it this Spring.

KORK ERKER ADAM ADA

Plan

- ▶ Whitman's theory of free lattices
- \blacktriangleright Free bicomplete categories
- ▶ Atomic objects, soft categories

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- ▶ Exact-coexact factorisations
- ▶ Rigid model structures

Whitman's theory of free lattices

A lattice is a poset L with binary infima (denoted $x \wedge y$ and binary suprema (denoted $x \vee y$). The notion of lattice is algebraic.

A lattice L has two operations, \wedge , \vee : $L \times L \rightarrow L$ and the following axioms hold:

 \blacktriangleright associativity: $x \wedge (y \wedge z) = (x \wedge y) \wedge z$, $x \vee (y \vee z) = (x \vee y) \vee z$

KORKAR KERKER SAGA

 \blacktriangleright commutativity:

$$
x \wedge y = y \wedge x, \qquad x \vee y = y \vee x
$$

▶ idempotence:

$$
x \wedge x = x, \qquad x \vee x = x
$$

▶ absorbtion:

 $x \wedge (x \vee y) = x$ $x \vee (x \wedge y) = x$

Whitman's theory of free lattices

Let us denote by Pos the category of posets and order preserving maps, and by $\mathcal{L}at$ the category of lattices. Then the forgetful functor $\mathcal{L}at \to \mathcal{P}os$ has a left adjoint $\mathcal{L}:\mathcal{P}os \to \mathcal{L}at$ which takes a poset P to the free lattice $\mathcal{L}(P)$ generated by P. Let $i: P \to \mathcal{L}(P)$ be the canonical order preserving map.

Theorem

(Whitman) For every u, v, x, $y \in \mathcal{L}(P)$ and a, $b \in P$,

► if
$$
x \land y \le u \lor v
$$
 then
\n $x \land y \le u$ or $x \land y \le v$ or $x \le u \lor v$ or $y \le u \lor v$;

• if
$$
i(a) \le u \vee v
$$
 then $i(a) \le u$ or $i(a) \le v$;

• if
$$
x \wedge y \leq i(b)
$$
 then $x \leq i(b)$ or $y \leq i(b)$;

• if
$$
i(a) \leq i(b)
$$
 then $a \leq b$.

Conversely, if L is a lattice and $i : P \rightarrow L$ is an order preserving map satisfying the conditions above, and if L is generated by $i(P)$. then $L = \mathcal{L}(P)$.

Let α -be a regular cardinal.

Definition

We say that a lattice L is α -complete if every subset $S \subseteq L$ of cardinality $<\alpha$ has a supremum $\bigvee S\in{\mathsf L}$ and an infimum $\bigwedge S\in{\mathsf L}.$

Let us denote by ${}^{\alpha}{\mathcal{L}}$ at the category of α -complete lattices. The forgetful functor ${}^{\alpha}$ *Cat* \rightarrow *Pos* has a left adjoint ${}^{\alpha}$ *C* : *Pos* \rightarrow ${}^{\alpha}$ *Cat* which takes a poset P to the α -complete lattice ${}^{\alpha}L(P)$ freely generated by P.

KORKAR KERKER SAGA

Indecomposable elements

Let E be an α -complete lattice.

Definition

An element $a \in E$ is said to be α -indecomposable if the following conditions hold for every subset $S \subseteq E$ of cardinality $\lt \alpha$:

1.
$$
a \leq \bigvee S \implies a \leq x
$$
 for some $x \in S$;

2.
$$
\bigwedge S \le a \implies x \le a
$$
 for some $x \in S$.

Lemma

(Whitman) The map $i : P \to {}^{\alpha}L(P)$ induces an isomorphism between P and the poset of α -indecomposable elements of ${}^{\alpha}L(P)$.

KORKAR KERKER SAGA

Whitman's theory for α -complete lattices

Definition

We say that an α -complete lattice L is α -soft, if the following implication holds

$$
\bigwedge S \leq \bigvee T \implies \begin{cases} s \leq \bigvee T & \text{for some } s \in S \\ \text{or} \\ \bigwedge S \leq t & \text{for some } t \in T \end{cases} \tag{1}
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

for every pair of subsets $S, T \subseteq L$ of cardinality $\lt \alpha$.

Theorem

(Whitman) An α -complete lattice L is free if an only if it is α -soft and generated by its α -indecomposable elements.

Complete, cocomplete and bicomplete categories

Recall that a (locally small) category $\mathcal C$ is said to be *complete* (resp. cocomplete) if every diagram $D: I \rightarrow C$ has a limit $\varprojlim D \in \mathcal{C}$ (resp. a colimit $\varinjlim D \in \mathcal{C}$). We say that a category \mathcal{C} is b *icomplete* if it is complete and cocomplete

Recall that a functor between complete (resp. cocomplete) categories $F: \mathcal{C} \to \mathcal{D}$ is said to be *continuous* (resp. cocontinuous) if it preserves limits (resp. colimits). We say that a functor between bicomplete categories is bicontinuous if it continuous and cocontinuous.

KORK EXTERNE PROVIDE

Free completion, cocompletion and bicompletion

Every locally small category K admits a locally small

- \triangleright free cocompletion $\sigma : \mathcal{K} \to \Sigma(\mathcal{K})$
- **►** free completion $\pi : \mathcal{K} \to \Pi(\mathcal{K})$
- **►** free bicompletion $\lambda : \mathcal{K} \to \Lambda(\mathcal{K})$

It is far from obvious that $\Lambda(\mathcal{K})$ is locally small when $\mathcal K$ is locally small.

KORKARYKERKER POLO

The cocompletion $\Sigma(K)$

The category $\Sigma(K)$ is cocomplete and the functor

$$
\sigma^{\star}: \mathsf{Fun}^{\mathrm{cc}}(\Sigma(\mathcal{K}), \mathcal{E}) \to \mathsf{Fun}(\mathcal{K}, \mathcal{E})
$$

is an equivalence of categories for any cocomplete category \mathcal{E} .

When K is small, $\Sigma(K)$ is the presheaf category $Psh(K) = Fun(K^{op}, Set)$

When K is locally small, $\Sigma(K)$ is the category of presentable presheaves $K^{op} \rightarrow Set$.

By definition, a presheaf $F : \mathcal{K}^{op} \to Set$ is presentable if it it the colimit

$$
F=\varinjlim_{i\in I}Hom(-,A(i))
$$

of a diagram of representables $A: I \rightarrow \mathcal{K}$.

σ -atomic objects

We say that an object A in a cocomplete category C is σ -atomic if the functor

$$
\mathcal{C}(\mathcal{A},-): \mathcal{C} \to \mathsf{Set}
$$

is cocontinuous.

A retract of a σ -atomic object is σ -atomic.

If $\sigma : \mathcal{K} \to \Sigma(\mathcal{K})$, then an object $A \in \Sigma(\mathcal{K})$ is σ -atomic if and only if it is a retract of an object $\sigma(K)$ for some $K \in \mathcal{K}$.

Theorem

A cocomplete category $\mathcal C$ is free if and only it is generated (under colimits) by σ -atomic objects.

KORKARYKERKER POLO

The free completion $\pi : \mathcal{K} \to \Pi(\mathcal{K})$

The category $\Pi(\mathcal{K})$ is complete and the functor

 $\pi^{\star} : \textit{Fun}^c(\Pi(\mathcal{K}), \mathcal{E}) \to \textit{Fun}(\mathcal{K}, \mathcal{E})$

is an equivalence of categories for any complete category \mathcal{E} .

The category $\Pi(\mathcal{K})$ is the opposite of the category $\Sigma(\mathcal{K}^{op})$, and the functor $\pi : \mathcal{K} \to \Pi(\mathcal{K})$ is the opposite of the functor $\sigma : \mathcal{K}^{op} \to \Sigma(\mathcal{K}^{op}).$

When $\mathcal K$ is small, $\Pi(\mathcal K)=\mathit{Fun}(\mathcal K,\mathit{Set})^{op}$ and the functor π is the opposite of the Yoneda functor $y : K^{op} \to Fun(K, Set)$.

KELK KØLK VELKEN EL 1990

π -atomic objects

We say that an object A in a complete category C is π -atomic if the functor

$$
\mathcal{C}(-,A):\mathcal{C}^{op}\to \mathsf{Set}
$$

is cocontinuous.

An object $A \in \mathcal{C}$ is π -atomic if and only if the opposite object $A^{op} \in \mathcal{C}^{op}$ is σ -atomic.

A retract of a π -atomic object is π -atomic.

If $\pi : \mathcal{K} \to \Pi(\mathcal{K})$, then object $A \in \Pi \mathcal{K}$ is π -atomic if and only if it is a retract of an object $\pi(K)$ for some $K \in \mathcal{K}$.

Theorem

A complete category C is free if and only it is generated (under limits) by π -atomic objects.

KORKAR KERKER SAGA

Side remarks on completely distributive categories

Completely distributive categories are bicomplete but not free (as bicomplete categories).

Lemma

 $[Day-Lack]$ The category $\Sigma \mathcal{C}$ is complete if \mathcal{C} is complete.

We say that a bicomplete category $\mathcal C$ is completely distributive if the colimit functor $\varinjlim : \Sigma \mathcal{C} \to \mathcal{C}$ is continuous.

Let $\mu : \mathcal{K} \to \Sigma \Pi(\mathcal{K})$ be the composite

$$
\mathcal{K} \xrightarrow{\sigma} \Sigma \mathcal{K} \xrightarrow{\Sigma(\pi)} \Sigma \Pi \mathcal{K}
$$

Theorem

[Marmolejo, Rosebrugh, Wood] The functor $\mu : \mathcal{K} \to \Sigma \Pi(\mathcal{K})$ exhibits the completely distributive category freely generated by K .

The free bicompletion $\lambda : \mathcal{K} \to \Lambda \mathcal{K}$

The category $\Lambda(\mathcal{K})$ is bicomplete and the functor

 $\lambda^{\star}: \mathsf{Fun}^{bc}(\mathsf{A}(\mathcal{K}), \mathcal{E}) \to \mathsf{Fun}(\mathcal{K}, \mathcal{E})$

is an equivalence of categories for any bicomplete category \mathcal{E} .

We say that an object in a bicomplete category $\mathcal C$ is atomic if it is both σ - and π -atomic.

If $\lambda : \mathcal{K} \to \Lambda(\mathcal{K})$, then an object $A \in \Lambda(\mathcal{K})$ is atomic if and only if it is a retract of an object $\lambda(K)$ for some $K \in \mathcal{K}$.

Theorem

A bicomplete category $\mathcal C$ is free if and only it is soft and generated (under limits and colimits) by atomic objects.

We next define the notion of soft category.

Soft categories

Definition

If C, D and E are cocomplete categories, we say that a functor of two variables $F: \mathcal{C} \times \mathcal{D} \rightarrow \mathcal{E}$ is soft if the following square of canonical maps

$$
\varinjlim_{\longrightarrow} F(A, B) \longrightarrow \varinjlim F(A, \varinjlim B)
$$
\n
$$
\varinjlim F(\varinjlim A, B) \longrightarrow F(\varinjlim A, \varinjlim B).
$$
\n(2)

KORKARYKERKER POLO

is a pushout for every pair of diagrams $A: I \rightarrow C$ and $B: J \rightarrow D$.

Soft categories

Definition

We say that a bicomplete category $\mathcal C$ is soft if the functor

$$
Hom: \mathcal{C}^{op} \times \mathcal{C} \to Set
$$
 (3)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

is soft.

By definition, C is soft if the following square of canonical maps

$$
\varinjlim_{\longrightarrow} \text{Hom}(A, B) \longrightarrow \varinjlim_{\longrightarrow} \text{Hom}(A, \varinjlim_{\longrightarrow} B) \tag{4}
$$
\n
$$
\varinjlim_{\longrightarrow} \text{Hom}(\varprojlim A, B) \longrightarrow \text{Hom}(\varprojlim A, \varinjlim B).
$$

is a pushout for every pair of diagrams $A: I \to C$ and $B: J \to C$.

Exact natural transformations

Definition

If C and D are complete categories, we say that a natural transformation $u : F \to G : C \to D$ is exact if the following square of canonical maps is a pullback,

for any diagram $A: I \rightarrow C$.

Remark: If \top is the terminal functor $C \rightarrow D$, then the natural transformation $F \to \top$ is exact iff the functor F is continuous.

Coexact natural transformations

Definition

If $\mathcal C$ and $\mathcal D$ are cocomplete categories, we say that a natural transformation $u : F \to G : C \to D$ is **coexact** if the following square of canonical maps is a pushout

for any diagram $A: I \rightarrow C$.

Remark: If \perp is the initial functor $C \rightarrow \mathcal{D}$, then the natural transformation $\perp \to G$ is coexact iff the functor G is cocontinuous.

KORKAR KERKER SAGA

Two factorisations

Let $\lambda : \mathcal{K} \to \Lambda(\mathcal{K})$ the free bicompletion of a category \mathcal{K} .

If S is a category, we say that a natural transformation $f : F \to G : \Lambda(\mathcal{K}) \to S$ is a λ -equivalence if the natural transformation $\lambda^*(f) = f \circ \lambda : F \circ \lambda \to G \circ \lambda$ is invertible.

Lemma

If the category S is bicomplete, then every natural transformation $f : F \to G : \Lambda(\mathcal{K}) \to S$ admits a unique factorisation

with $u : F \to E$ a coexact λ -equivalence and $v : E \to G$ an exact transformation. There is a dual factorisation with u a coexact transformation and v an exact λ -equivalence.

Factorisation systems

Definition

A pair (A, B) of classes of maps in a category $\mathcal E$ is called a factorisation system if the following conditions hold:

- \triangleright the classes A and B contain the isomorphisms and are closed under composition;
- ▶ every map $f : A \rightarrow B$ admits a unique factorisation $f = vu : A \rightarrow E \rightarrow B$ with $u \in A$ and $v \in B$ (the factorisation is unique up to unique iso).

It follows from these conditions that if $u \in A$ and $f \in B$, then every commutative square

$$
A \longrightarrow X
$$

\n
$$
u \downarrow \qquad \qquad f
$$

\n
$$
B \longrightarrow Y
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

has a unique diagonal filler $B \to X$.

Rigid model structures

Definition

Let $\mathcal E$ be a category with finite limits and finite colimits. A *rigid* model structure on $\mathcal E$ is a triple $(C, W, \mathcal F)$ of classes of maps in $\mathcal E$ satisfying the following conditions:

- 1. the class W contains the isomorphisms and has the 3-for-2 property;
- 2. the pair $(C \cap W, \mathcal{F})$ and the pair $(C, W \cap \mathcal{F})$ are factorisation systems.

A map in W is said to be a weak-equivalence.

A map in F is said to be a *fibration*. An object $X \in \mathcal{E}$ is said to be fibrant if the map $X \to \top$ is a fibration. A map in $\mathcal{F} \cap \mathcal{W}$ is said to be a trivial fibration.

A map in C is said to be a *cofibration*. An object $X \in \mathcal{E}$ is said to be cofibrant if the map $\perp \to X$ is a cofibration. A map in $\mathcal{C} \cap \mathcal{W}$ is said to be a trivial cofibration.

The homotopy category of a rigid model category

The subcategory \mathcal{E}_f of fibrant objects (resp. \mathcal{E}_c of cofibrant objects) of a rigid model model category $\mathcal E$ is reflective (resp. coreflective).

The intersection $\mathcal{E}_{fc} = \mathcal{E}_f \cap \mathcal{E}_c$ is coreflective in \mathcal{E}_f and reflective in \mathcal{E}_{c} .

Moreover, the following square commutes:

KORKARYKERKER POLO

A rigid model structures on $Fun({\Lambda}({\mathcal K}),{\mathcal S})$

Let $\lambda : \mathcal{K} \to \Lambda(\mathcal{K})$ be the bicompletion of a category \mathcal{K} .

Theorem

If S is a bicomplete category, then the category $\text{Fun}(\Lambda(\mathcal{K}),\mathcal{S})$ admits a rigid model structure in which a weak equivalence is an λ -equivalence, a fibration is an exact natural transformation and a cofibration is a coexact natural transformation.

A fibrant (resp. cofibrant) object is a continuous (resp. cocontinuous) functor $\Lambda(\mathcal{K}) \to \mathcal{S}$

A fibrant-cofibrant object is a bicontinuous functor $\Lambda(\mathcal{K})\rightarrow\mathcal{S}$

The category of bicontinuous functor $\Lambda(\mathcal{K}) \to \mathcal{S}$ is equivalent to the category $Fun(K, S)$

KID KA KERKER E VOOR

Fibrant objects in a rigid model structure

Let $\mathcal E$ be a category equipped with a rigid model structure $(C, W, \mathcal{F}).$

The fibrant replacement $A \to A_f$ of an object $A \in \mathcal{E}$ is obtained by factoring the map $A \to \top$ as a trivial cofibration $A \to A_f$ followed by a fibration $A_f \rightarrow \top$.

A map $r: A \rightarrow B$ is reflecting the object A into \mathcal{E}_f if and only if the following two conditions hold:

KORKAR KERKER SAGA

1. B is fibrant

2. r is a trivial cofibration.

Best continuous approximation

Let $\lambda : \mathcal{K} \to \Lambda(\mathcal{K})$ the bicompletion of a category \mathcal{K} .

Corollary

The subcategory Fun^c $(\Lambda(\mathcal{K}), \mathcal{S})$ of continuous functors $\Lambda(\mathcal{K}) \to \mathcal{S}$ is reflective.

For every functor $F : \Lambda(\mathcal{K}) \to S$ there exists a best approximation $r: F \to F^c$ by a continuous functor $F^c: \Lambda(\mathcal{K}) \to \mathcal{S}.$

Corollary

The natural transformation $r : F \to F^c$ is a coexact λ -equivalence.

KORKAR KERKER SAGA

An example

For any diagram $A: I \to \Lambda(\mathcal{K})$, the map

$$
\varinjlim Hom(A,X)\to Hom(\varprojlim A,X)
$$

is a natural transformation $r(X) : F(X) \to Hom(L, X)$, where $F(X) = \varinjlim Hom(A, X)$ and $L = \varprojlim A$.

Lemma

The natural transformation $r : F \to Hom(L, -)$ is coexact.

Proof.

It suffices to show that $r : F \rightarrow Hom(L, -)$ exhibits the best approximation of F by a continuous functor. Let us show that the map $Nat(r, G)$: $Nat(Hom(L, -), G) \rightarrow Nat(F, G)$ is invertible for every continuous functor $G : \Lambda(\mathcal{K}) \to$ Set. We have

$$
Nat(F, G) = \underleftarrow{\lim} Nat(Hom(A, -), G) = \underleftarrow{\lim} GA
$$
 (5)

$$
= G(\underleftarrow{\text{im}} A) = G(L) = \text{Nat}(\text{Hom}(L, -), G) \qquad (6)
$$

 $\begin{array}{c} \mathcal{A} \cap \mathcal{A} \longrightarrow \mathcal{A$

since the functor G is continuous.

$\Lambda(\mathcal{K})$ is soft

We saw that the natural transformation

$$
\lim_{\longrightarrow} Hom(A, X) \to Hom(\lim_{\longleftarrow} A, X)
$$

is coexact for any diagram $A: I \to \Lambda(\mathcal{K})$. Hence the following square is a pushout

$$
\varinjlim_{\longrightarrow} Hom(A, B) \longrightarrow \varinjlim_{\longrightarrow} Hom(A, \varinjlim_{\longrightarrow} B) \tag{7}
$$
\n
$$
\varinjlim_{\longrightarrow} Hom(\varprojlim A, B) \longrightarrow Hom(\varprojlim A, \varinjlim B).
$$

for every diagram $B: J \to \Lambda(\mathcal{K})$.

Conclusions

We saw that Whitman's theory of free lattices can be extended to free bicomplete categories. It can also be extended to

- \blacktriangleright free bicomplete enriched categories,
- \triangleright free bicomplete ∞ -categories,
- ▶ free bicomplete enriched ∞-categories.

and the proof are essentially the same. The theory can also be extended to categories that are simultaneously closed under a class α of limits and a class β of colimits ([AK][KP][ABLR][KS][LG][Rezk 1,2]). The (α, β) -bicompletion

$$
\lambda: \mathcal{K} \to \Lambda^{(\alpha,\beta)}(\mathcal{K})
$$

of a category K is (α, β) -soft.

The theory of bicompletion appears to be a fundamental aspect of general category theory.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Applications to linear logic

Free bicomplete lattices have a game theoretic interpretation related to Lorenzen's game theoretic interpretation of logic [Bla] [J3]. The category of coherence spaces of Girard is pointed and soft with respect to product and coproducts [HJ1] [HJ2]; it can be used to construct free pointed category with products and coproducts. The category $\Lambda(1)$ is star-autonomous, but an explicit combinatorial construction is still missing.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Bibliography

- \blacktriangleright [ABLR] J. Adámek, F. Borceux, S. Lack & J. Rosický: A classification of accessible categories (2002).
- ▶ [AK] M.H. Albert & G.M. Kelly, The closure of a class of colimits (1988).
- \blacktriangleright [Bla] A. Blass, A game semantic for linear logic (1992).
- ▶ [DL] B.J. Day & S. Lack, Limits of small functors (2007).
- ▶ [Gi] J.Y. Girard, Linear Logic (1987).
- ▶ [HJ1] H. Hu & A. Joyal, Coherence Completions of Categories and their enriched softness (1997).
- ▶ [HJ2] H. Hu & A. Joyal, Coherence Completions of Categories (1999).
- ▶ [J1] A. Joyal, Free Bicompletion of Categorie (1995).
- ▶ [J2] A. Joyal, Free Bicompletion of Enriched Categories (1995).

Bibliography

- \blacktriangleright [J3] A. Joyal, Free lattices, communication and money games (1997).
- ▶ [KS] G.M. Kelly & V. Schmitt, Notes on enriched categories with colimits of some class (2005).
- \blacktriangleright [KP] G.M. Kelly & R. Paré, Notes on the Albert-Kelly paper "The closure of a class of colimits" (1988).
- \blacktriangleright [LT] S. Lack & G. Tendas, Accessible categories with a class of limits (2023).
- \blacktriangleright [Lu] J. Lurie, *Higher topos theory* (2009).
- ▶ [MRW] F. Marmolejo, R. Rosebrugh & R.J. Wood, Completely and totally distributive categories I (2012).
- ▶ [R1] C. Rezk, Free colimit completion in ∞ -categories (2022).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- ▶ [R2] C. Rezk, Generalising accessible ∞-categories (Draft 2023).
- ▶ [W] P.M. Whitman, Free Lattices (1941).

Thank you for your attention!

