Free bicompletion of categories revisited (Part 1)

André Joyal

Université du Québec à Montréal (UQÀM)

Topos Institute Colloquium (14/2/2024)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Abstract

Whitman's theory of free lattices can be extended to lattices enriched over a quantale, to bicomplet categories, and also to bicomplete ∞ -categories. It has applications to the semantic of linear logic [HJ1][HJ2].

My goal here is to introduce a few basic ideas of the theory of free bicomplete categories.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Apology

For 25 years, I have been promising to many people a draft of my paper on free bicompletion of categories. I apologise for been so late delivering. I am presently writing that draft, and I plan to finish it this Spring.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Plan

- Whitman's theory of free lattices
- Free bicomplete categories
- Atomic objects, soft categories

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Exact-coexact factorisations
- Rigid model structures

Whitman's theory of free lattices

A *lattice* is a poset L with binary infima (denoted $x \land y$ and binary suprema (denoted $x \lor y$). The notion of lattice is algebraic.

A lattice L has two operations, $\land, \lor : L \times L \rightarrow L$ and the following axioms hold:

associativity:

 $x \wedge (y \wedge z) = (x \wedge y) \wedge z, \qquad x \vee (y \vee z) = (x \vee y) \vee z$

commutativity:

 $x \wedge y = y \wedge x, \qquad x \vee y = y \vee x$

idempotence:

$$x \wedge x = x, \qquad x \vee x = x$$

absorbtion:

 $x \wedge (x \vee y) = x$ $x \vee (x \wedge y) = x$

Whitman's theory of free lattices

Let us denote by *Pos* the category of posets and order preserving maps, and by $\mathcal{L}at$ the category of lattices. Then the forgetful functor $\mathcal{L}at \rightarrow Pos$ has a left adjoint $\mathcal{L} : Pos \rightarrow \mathcal{L}at$ which takes a poset *P* to the free lattice $\mathcal{L}(P)$ generated by *P*. Let $i : P \rightarrow \mathcal{L}(P)$ be the canonical order preserving map.

Theorem

(Whitman) For every $u, v, x, y \in \mathcal{L}(P)$ and $a, b \in P$,

$$if x \land y \le u \lor v \ then x \land y \le u \ or \ x \land y \le v \ or \ x \le u \lor v \ or \ y \le u \lor v;$$

• if
$$i(a) \le u \lor v$$
 then $i(a) \le u$ or $i(a) \le v$;

• if
$$x \land y \le i(b)$$
 then $x \le i(b)$ or $y \le i(b)$;

• if
$$i(a) \leq i(b)$$
 then $a \leq b$.

Conversely, if L is a lattice and $i : P \to L$ is an order preserving map satisfying the conditions above, and if L is generated by i(P), then $L = \mathcal{L}(P)$.

Let α -be a regular cardinal.

Definition

We say that a lattice *L* is α -complete if every subset $S \subseteq L$ of cardinality $< \alpha$ has a supremum $\bigvee S \in L$ and an infimum $\bigwedge S \in L$.

Let us denote by ${}^{\alpha}\mathcal{L}at$ the category of α -complete lattices. The forgetful functor ${}^{\alpha}\mathcal{L}at \rightarrow Pos$ has a left adjoint ${}^{\alpha}\mathcal{L} : Pos \rightarrow {}^{\alpha}\mathcal{L}at$ which takes a poset P to the α -complete lattice ${}^{\alpha}\mathcal{L}(P)$ freely generated by P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Indecomposable elements

Let *E* be an α -complete lattice.

Definition

An element $a \in E$ is said to be α -indecomposable if the following conditions hold for every subset $S \subseteq E$ of cardinality $< \alpha$:

1.
$$a \leq \bigvee S \implies a \leq x$$
 for some $x \in S$;

2.
$$\bigwedge S \leq a \implies x \leq a$$
 for some $x \in S$.

Lemma

(Whitman) The map $i : P \to {}^{\alpha}\mathcal{L}(P)$ induces an isomorphism between P and the poset of α -indecomposable elements of ${}^{\alpha}\mathcal{L}(P)$.

Whitman's theory for α -complete lattices

Definition

We say that an α -complete lattice *L* is α -soft, if the following implication holds

$$\bigwedge S \leq \bigvee T \implies \begin{cases} s \leq \bigvee T & \text{for some } s \in S \\ \text{or} & \\ \bigwedge S \leq t & \text{for some } t \in T \end{cases}$$
(1)

for every pair of subsets $S, T \subseteq L$ of cardinality $< \alpha$.

Theorem

(Whitman) An α -complete lattice L is free if an only if it is α -soft and generated by its α -indecomposable elements.

Complete, cocomplete and bicomplete categories

Recall that a (locally small) category C is said to be *complete* (resp. cocomplete) if every diagram $D : I \to C$ has a limit $\lim D \in C$ (resp. a colimit $\lim D \in C$). We say that a category C is *bicomplete* if it is complete and cocomplete

Recall that a functor between complete (resp. cocomplete) categories $F : C \to D$ is said to be *continuous* (resp. cocontinuous) if it preserves limits (resp. colimits). We say that a functor between bicomplete categories is *bicontinuous* if it continuous and cocontinuous.

Free completion, cocompletion and bicompletion

Every locally small category $\mathcal K$ admits a locally small

- free cocompletion $\sigma : \mathcal{K} \to \Sigma(\mathcal{K})$
- free completion $\pi : \mathcal{K} \to \Pi(\mathcal{K})$
- free bicompletion $\lambda : \mathcal{K} \to \Lambda(\mathcal{K})$

It is far from obvious that $\Lambda(\mathcal{K})$ is locally small when \mathcal{K} is locally small.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The cocompletion $\Sigma(\mathcal{K})$

The category $\Sigma(\mathcal{K})$ is cocomplete and the functor

 $\sigma^{\star}: \mathit{Fun}^{cc}(\Sigma(\mathcal{K}), \mathcal{E}) \to \mathit{Fun}(\mathcal{K}, \mathcal{E})$

is an equivalence of categories for any cocomplete category $\ensuremath{\mathcal{E}}.$

When \mathcal{K} is small, $\Sigma(\mathcal{K})$ is the presheaf category $Psh(\mathcal{K}) = Fun(\mathcal{K}^{op}, Set)$

When \mathcal{K} is locally small, $\Sigma(\mathcal{K})$ is the category of presentable presheaves $\mathcal{K}^{op} \to Set$.

By definition, a presheaf $F : \mathcal{K}^{op} \to Set$ is *presentable* if it it the colimit

$$F = \varinjlim_{i \in I} Hom(-, A(i))$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

of a diagram of representables $A: I \rightarrow \mathcal{K}$.

σ -atomic objects

We say that an object A in a cocomplete category C is σ -atomic if the functor

$$\mathcal{C}(A, -) : \mathcal{C} \to Set$$

is cocontinuous.

A retract of a σ -atomic object is σ -atomic.

If $\sigma : \mathcal{K} \to \Sigma(\mathcal{K})$, then an object $A \in \Sigma(\mathcal{K})$ is σ -atomic if and only if it is a retract of an object $\sigma(K)$ for some $K \in \mathcal{K}$.

Theorem

A cocomplete category C is free if and only it is generated (under colimits) by σ -atomic objects.

The free completion $\pi : \mathcal{K} \to \Pi(\mathcal{K})$

The category $\Pi(\mathcal{K})$ is complete and the functor

$$\pi^*$$
: $Fun^c(\Pi(\mathcal{K}), \mathcal{E}) \to Fun(\mathcal{K}, \mathcal{E})$

is an equivalence of categories for any complete category $\ensuremath{\mathcal{E}}.$

The category $\Pi(\mathcal{K})$ is the opposite of the category $\Sigma(\mathcal{K}^{op})$, and the functor $\pi : \mathcal{K} \to \Pi(\mathcal{K})$ is the opposite of the functor $\sigma : \mathcal{K}^{op} \to \Sigma(\mathcal{K}^{op})$.

When \mathcal{K} is small, $\Pi(\mathcal{K}) = Fun(\mathcal{K}, Set)^{op}$ and the functor π is the opposite of the Yoneda functor $y : \mathcal{K}^{op} \to Fun(\mathcal{K}, Set)$.

π -atomic objects

We say that an object A in a complete category C is π -atomic if the functor

$$\mathcal{C}(-,A):\mathcal{C}^{op}
ightarrow Set$$

is cocontinuous.

An object $A \in C$ is π -atomic if and only if the opposite object $A^{op} \in C^{op}$ is σ -atomic.

A retract of a π -atomic object is π -atomic.

If $\pi : \mathcal{K} \to \Pi(\mathcal{K})$, then object $A \in \Pi \mathcal{K}$ is π -atomic if and only if it is a retract of an object $\pi(\mathcal{K})$ for some $\mathcal{K} \in \mathcal{K}$.

Theorem

A complete category C is free if and only it is generated (under limits) by π -atomic objects.

Side remarks on completely distributive categories

Completely distributive categories are bicomplete but not free (as bicomplete categories).

Lemma

 $[\mathrm{Day-Lack}]$ The category $\Sigma\mathcal{C}$ is complete if $\mathcal C$ is complete.

We say that a bicomplete category $\mathcal C$ is completely distributive if the colimit functor $\varinjlim:\Sigma\mathcal C\to\mathcal C$ is continuous.

Let $\mu: \mathcal{K} \to \Sigma \Pi(\mathcal{K})$ be the composite

$$\mathcal{K} \xrightarrow{\sigma} \Sigma \mathcal{K} \xrightarrow{\Sigma(\pi)} \Sigma \Pi \mathcal{K}$$

Theorem

[Marmolejo, Rosebrugh, Wood] The functor $\mu : \mathcal{K} \to \Sigma \Pi(\mathcal{K})$ exhibits the completely distributive category freely generated by \mathcal{K} .

The free bicompletion $\lambda : \mathcal{K} \to \Lambda \mathcal{K}$

The category $\Lambda(\mathcal{K})$ is bicomplete and the functor

$$\lambda^{\star}$$
: Fun^{bc}($\Lambda(\mathcal{K}), \mathcal{E}$) \rightarrow Fun(\mathcal{K}, \mathcal{E})

is an equivalence of categories for any bicomplete category $\mathcal{E}.$

We say that an object in a bicomplete category C is *atomic* if it is both σ - and π -atomic.

If $\lambda : \mathcal{K} \to \Lambda(\mathcal{K})$, then an object $A \in \Lambda(\mathcal{K})$ is atomic if and only if it is a retract of an object $\lambda(\mathcal{K})$ for some $\mathcal{K} \in \mathcal{K}$.

Theorem

A bicomplete category C is free if and only it is **soft** and generated (under limits and colimits) by atomic objects.

We next define the notion of soft category.

Soft categories

Definition

If \mathcal{C} , \mathcal{D} and \mathcal{E} are cocomplete categories, we say that a functor of two variables $F : \mathcal{C} \times \mathcal{D} \to \mathcal{E}$ is *soft* if the following square of canonical maps

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is a pushout for every pair of diagrams $A: I \rightarrow C$ and $B: J \rightarrow D$.

Soft categories

Definition

We say that a bicomplete category C is *soft* if the functor

$$Hom: \mathcal{C}^{op} \times \mathcal{C} \to \mathsf{Set} \tag{3}$$

is soft.

By definition, ${\mathcal C}$ is soft if the following square of canonical maps

is a pushout for every pair of diagrams $A: I \rightarrow C$ and $B: J \rightarrow C$.

Exact natural transformations

Definition

If C and D are complete categories, we say that a natural transformation $u: F \to G : C \to D$ is **exact** if the following square of canonical maps is a pullback,

for any diagram $A: I \rightarrow C$.

Remark: If \top is the terminal functor $C \to D$, then the natural transformation $F \to \top$ is exact iff the functor F is continuous.

Coexact natural transformations

Definition

If C and D are cocomplete categories, we say that a natural transformation $u: F \to G : C \to D$ is **coexact** if the following square of canonical maps is a pushout

for any diagram $A: I \rightarrow C$.

Remark: If \perp is the initial functor $C \rightarrow D$, then the natural transformation $\perp \rightarrow G$ is coexact iff the functor G is cocontinuous.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two factorisations

Let $\lambda : \mathcal{K} \to \Lambda(\mathcal{K})$ the free bicompletion of a category \mathcal{K} .

If S is a category, we say that a natural transformation $f: F \to G: \Lambda(\mathcal{K}) \to S$ is a λ -equivalence if the natural transformation $\lambda^*(f) = f \circ \lambda : F \circ \lambda \to G \circ \lambda$ is invertible.

Lemma

If the category S is bicomplete, then every natural transformation $f: F \to G: \Lambda(\mathcal{K}) \to S$ admits a unique factorisation

with $u: F \to E$ a coexact λ -equivalence and $v: E \to G$ an exact transformation. There is a dual factorisation with u a coexact transformation and v an exact λ -equivalence.

Factorisation systems

Definition

A pair $(\mathcal{A}, \mathcal{B})$ of classes of maps in a category \mathcal{E} is called a *factorisation system* if the following conditions hold:

- the classes A and B contain the isomorphisms and are closed under composition;
- every map f : A → B admits a unique factorisation f = vu : A → E → B with u ∈ A and v ∈ B (the factorisation is unique up to unique iso).

It follows from these conditions that if $u \in \mathcal{A}$ and $f \in \mathcal{B}$, then every commutative square

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

has a unique diagonal filler $B \rightarrow X$.

Rigid model structures

Definition

Let \mathcal{E} be a category with finite limits and finite colimits. A *rigid* model structure on \mathcal{E} is a triple $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ of classes of maps in \mathcal{E} satisfying the following conditions:

- 1. the class $\ensuremath{\mathcal{W}}$ contains the isomorphisms and has the 3-for-2 property;
- 2. the pair $(C \cap W, F)$ and the pair $(C, W \cap F)$ are *factorisation* systems.

A map in \mathcal{W} is said to be a *weak-equivalence*.

A map in \mathcal{F} is said to be a *fibration*. An object $X \in \mathcal{E}$ is said to be *fibrant* if the map $X \to \top$ is a fibration. A map in $\mathcal{F} \cap \mathcal{W}$ is said to be a *trivial fibration*.

A map in C is said to be a *cofibration*. An object $X \in \mathcal{E}$ is said to be *cofibrant* if the map $\bot \to X$ is a cofibration. A map in $C \cap W$ is said to be a *trivial cofibration*.

The homotopy category of a rigid model category

The subcategory \mathcal{E}_f of fibrant objects (resp. \mathcal{E}_c of cofibrant objects) of a rigid model model category \mathcal{E} is reflective (resp. coreflective).

The intersection $\mathcal{E}_{fc} = \mathcal{E}_f \cap \mathcal{E}_c$ is coreflective in \mathcal{E}_f and reflective in \mathcal{E}_c .

Moreover, the following square commutes:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A rigid model structures on $Fun(\Lambda(\mathcal{K}), \mathcal{S})$

Let $\lambda : \mathcal{K} \to \Lambda(\mathcal{K})$ be the bicompletion of a category \mathcal{K} .

Theorem

If S is a bicomplete category, then the category $Fun(\Lambda(\mathcal{K}), S)$ admits a rigid model structure in which a weak equivalence is an λ -equivalence, a fibration is an exact natural transformation and a cofibration is a coexact natural transformation.

A fibrant (resp. cofibrant) object is a continuous (resp. cocontinuous) functor $\Lambda(\mathcal{K})\to \mathcal{S}$

A fibrant-cofibrant object is a bicontinuous functor $\Lambda(\mathcal{K}) \to \mathcal{S}$

The category of bicontinuous functor $\Lambda(\mathcal{K}) \to \mathcal{S}$ is equivalent to the category $Fun(\mathcal{K}, \mathcal{S})$

Fibrant objects in a rigid model structure

Let ${\mathcal E}$ be a category equipped with a rigid model structure $({\mathcal C},{\mathcal W},{\mathcal F}).$

The *fibrant replacement* $A \to A_f$ of an object $A \in \mathcal{E}$ is obtained by factoring the map $A \to \top$ as a trivial cofibration $A \to A_f$ followed by a fibration $A_f \to \top$.

A map $r : A \to B$ is reflecting the object A into \mathcal{E}_f if and only if the following two conditions hold:

1. B is fibrant

2. r is a trivial cofibration.

Best continuous approximation

Let $\lambda : \mathcal{K} \to \Lambda(\mathcal{K})$ the bicompletion of a category \mathcal{K} .

Corollary

The subcategory Fun^c($\Lambda(\mathcal{K}), S$) of continuous functors $\Lambda(\mathcal{K}) \to S$ is reflective.

For every functor $F : \Lambda(\mathcal{K}) \to \mathcal{S}$ there exists a best approximation $r : F \to F^c$ by a continuous functor $F^c : \Lambda(\mathcal{K}) \to \mathcal{S}$.

Corollary

The natural transformation $r: F \to F^c$ is a coexact λ -equivalence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

An example

For any diagram $A: I \to \Lambda(\mathcal{K})$, the map

$$\varinjlim Hom(A,X) \to Hom(\varprojlim A,X)$$

is a natural transformation $r(X) : F(X) \to Hom(L, X)$, where $F(X) = \varinjlim Hom(A, X)$ and $L = \varinjlim A$.

Lemma

The natural transformation $r: F \rightarrow Hom(L, -)$ is coexact.

Proof.

It suffices to show that $r : F \to Hom(L, -)$ exhibits the best approximation of F by a continuous functor. Let us show that the map $Nat(r, G) : Nat(Hom(L, -), G) \to Nat(F, G)$ is invertible for every continuous functor $G : \Lambda(\mathcal{K}) \to Set$. We have

$$Nat(F,G) = \varprojlim Nat(Hom(A,-),G) = \varprojlim GA$$
(5)

$$= G(\varprojlim A) = G(L) = Nat(Hom(L, -), G)$$
 (6)

since the functor G is continuous.

$\Lambda(\mathcal{K})$ is soft

We saw that the natural transformation

$$\varinjlim Hom(A,X) \to Hom(\varprojlim A,X)$$

is coexact for any diagram $A: I \to \Lambda(\mathcal{K})$. Hence the following square is a pushout

$$\underbrace{\lim_{K \to \infty} \lim_{K \to \infty} \operatorname{Hom}(A, B) \longrightarrow \lim_{K \to \infty} \operatorname{Hom}(A, \varinjlim_{K} B)}_{\lim_{K \to \infty} \operatorname{Hom}(\varprojlim_{K} A, \varinjlim_{K} B)} (7)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for every diagram $B: J \to \Lambda(\mathcal{K})$.

Conclusions

We saw that Whitman's theory of free lattices can be extended to free bicomplete categories. It can also be extended to

- free bicomplete enriched categories,
- free bicomplete ∞ -categories,
- free bicomplete enriched ∞ -categories.

and the proof are essentially the same. The theory can also be extended to categories that are simultaneously closed under a class α of limits and a class β of colimits ([AK][KP][ABLR][KS][LG][Rezk 1,2]). The (α , β)-bicompletion

$$\lambda:\mathcal{K}\to\Lambda^{(\alpha,\beta)}(\mathcal{K})$$

of a category \mathcal{K} is (α, β) -soft.

The theory of bicompletion appears to be a fundamental aspect of general category theory.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Applications to linear logic

Free bicomplete lattices have a game theoretic interpretation related to Lorenzen's game theoretic interpretation of logic [Bla] [J3]. The category of coherence spaces of Girard is pointed and soft with respect to product and coproducts [HJ1] [HJ2]; it can be used to construct free pointed category with products and coproducts. The category $\Lambda(1)$ is star-autonomous, but an explicit combinatorial construction is still missing.

Bibliography

- [ABLR] J. Adámek, F. Borceux, S. Lack & J. Rosický: A classification of accessible categories (2002).
- [AK] M.H. Albert & G.M. Kelly, The closure of a class of colimits (1988).
- [Bla] A. Blass, A game semantic for linear logic (1992).
- ▶ [DL] B.J. Day & S. Lack, *Limits of small functors* (2007).
- [Gi] J.Y. Girard, Linear Logic (1987).
- [HJ1] H. Hu & A. Joyal, Coherence Completions of Categories and their enriched softness (1997).
- [HJ2] H. Hu & A. Joyal, Coherence Completions of Categories (1999).
- ▶ [J1] A. Joyal, Free Bicompletion of Categorie (1995).
- [J2] A. Joyal, Free Bicompletion of Enriched Categories (1995).

Bibliography

- [J3] A. Joyal, Free lattices, communication and money games (1997).
- [KS] G.M. Kelly & V. Schmitt, Notes on enriched categories with colimits of some class (2005).
- [KP] G.M. Kelly & R. Paré, Notes on the Albert-Kelly paper "The closure of a class of colimits" (1988).
- [LT] S. Lack & G. Tendas, Accessible categories with a class of limits (2023).
- ▶ [Lu] J. Lurie, *Higher topos theory* (2009).
- [MRW] F. Marmolejo, R. Rosebrugh & R.J. Wood, Completely and totally distributive categories I (2012).
- ▶ [R1] C. Rezk, Free colimit completion in ∞ -categories (2022).

・ロト・日本・日本・日本・日本・日本・日本

- ► [R2] C. Rezk, Generalising accessible ∞-categories (Draft 2023).
- ▶ [W] P.M. Whitman, *Free Lattices* (1941).

Thank you for your attention!

