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FIG. 8. Visualization of the three different spatial partitions of Peru’s provinces on a map. (a) Broad climate partition
into coast (yellow), mountains (brown), and jungle (green); (b) detailed climate partition, in which we start with the
broad partition and then further divide the coast and mountains into northern coast, central coast, southern coast, northern
mountains, central mountains, and southern mountains; and (c) the administrative partition of Peru. We obtained province
boundaries from [82] and plot the maps in MATLAB.

We use the term “spatial partitions” to describe partitions that have high z-Rand scores in
comparison to the manual climate or administrative partitions. For multilayer networks, we
also compare the algorithmic partitions to partitions that contain a planted temporal change in
community structure. For these comparisons, we group the multilayer nodes into ones that occur
before or after a “critical” time tc (i.e., partitions into a “pre-tc” community and a “post-tc”
community). We test the set t =
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of times that we
use to create the multilayer network, and we report the time with the highest z-Rand score as the
critical time tc. We also test for pairs of critical times (yielding a partition into three communities)
by examining all possible pairs of critical times tc1 and tc2 in the same manner. We use the term
“temporal partitions” to describe algorithmic partitions of the disease-correlation networks that
yield high z-Rand scores in these comparisons.

4.3.1 Modularity Maximization Using the NG Null Model. We first study the community
structures of the 700 overlapping static networks formed by taking t = {1,2, . . . ,700} and using
D = 80. (There are 779 time points in total.) The community structures that we obtain from max-
imizing modularity have a strong spatial organization, as suggested by the high z-Rand scores
when compared to topographical partitions. As one can see in Fig. 9(a), in which we plot the
z-Rand scores versus the centers of the time windows that correspond to the static networks, the
spatial organization is especially evident starting in the year 2000. In our subsequent figures,
time points that we indicate on the axes also correspond to the centers of the associated time
windows.

As one can see from a plot of number of epidemic cases over time (see Fig. 7), this transition
seems to occur near the time of the largest countrywide epidemic in the data, and the subse-
quent period includes recurring yearly epidemics that were linked to climatic patterns in prior

Spatial Systems
• Space has a major influence on 

the structure and dynamics of 
complex systems

• Useful reference: Marc 
Barthelemy, Spatial Networks, 
2022
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Quantifying “Political Islands”
How do we detect red voters in a sea of blue? 
(Or light blue voters in a sea of dark blue?)



Spiders Spinning Under the Influence
• The Marshall Space Flight Center studied the webs of spiders that were exposed to 

various chemicals. (There is a NASA Tech Brief from 1995.)
• Earlier work, starting in 1948 by Swiss pharmacologist Peter N. Witt

• They concluded that more toxic chemicals resulted in more deformed spiderwebs



Resource Coverage: Pubs in the United Kingdom

P. Corcoran & C. B. Jones 
[2023], “Topological Data 
Analysis for Geographical 
Information Science Using 
Persistent Homology”, 
International Journal of 
Geographical Information 
Science, Vol. 37, No. 3: 
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A Couple of References
• Gunnar Carlson [2020]: “Topological Methods for Data Modelling”, Nature 

Reviews Physics, Vol. 2: 697–707

• Nina Otter, MAP, Ulrike Tillmann, Peter Grindrod, and Heather A. Harrington 
[2017]: “A Roadmap for the Computation of Persistent Homology”, European 
Physical Journal — Data Science, Vol. 6: 17
• Includes a tutorial for installing and using software for PH. If you are trying this stuff for the first 

time, this is an article to help guide you through things.



Some Lectures Notes and Books
• Vidit Nanda [2021]: “Computational Applied Topology”, Mathematical 

Institute, University of Oxford
• Lecture notes: http://people.maths.ox.ac.uk/nanda/cat/TDANotes.pdf
• Individual topics and videos: http://people.maths.ox.ac.uk/nanda/cat/ 

• Book: Herbert Edelsbrunner and John Harer [2010]: Computational 
Topology: A Introduction
• One can purchase it, but some versions are available online (e.g., at 

https://www.maths.ed.ac.uk/~v1ranick/papers/edelcomp.pdf)

• Book: Tamal Krishna Dey and Yusu Wang [2022]: Computational 
Topology for Data Analysis
• One can purchase it, but some versions are available online (e.g., at 

https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.html)

https://www.maths.ed.ac.uk/~v1ranick/papers/edelcomp.pdf


https://youtu.be/9NlqYr6-TpA

(Henry Segerman and Keenan Crane) 

Donuts and Coffee Cups



If we squint at a point cloud, what 
does it look like?



If we squint at a point cloud, what 
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Traditional Persistent Homology: Thickening a 
Point Cloud and Tracking Changes in Topology
[Figure from: Michelle Feng, Abigail Hickock, Yacoub H. Kureh, MAP, & Chad M. Topaz, 
“Connecting the Dots: Discovering the “Shape” of Data”, Frontiers for Young Minds, 2021]



Counting the 
Numbers of 
Components (H0) and 1D Holes (H1)



What is the point?
•Algorithmic methods to study (potentially high-dimensional) data 

in a quantitative manner
• Data from point clouds, networks, images, time series, etc.

• Examine the “shape” of data

•Persistent homology (PH)
• Mathematical formalism to study topological invariants

• Fast algorithms

• Persistent structures: a way to cope with noise in data



CAlgebraic Topology
The key subject with underlying mathematical ideas for topological data analysis (TDA)



Key Idea
• We want to describe the properties 

of an object that stay the same if we 
stretch it or shrink it or bend it, but 
without us gluing things together or 
tearing the object

• Seek topological invariants
• Number of components

• Number of holes 

• Number of “holes” in different dimensions 
(loops, cavities, etc.)

• Remark: Today we are considering 
homological invariants, but there are also 
other types of topological invariants



Simplicial Complexes
• A k-simplex is a k-dimensional polytope that is the convex hull of its k+1 

vertices.

• An m-face of a k-simplex is a subset of size m+1 and is an m-simplex itself

• A simplicial complex S  is a set of simplices that satisfies the following 
conditions:
• Every face of a simplex of S is also in S
• The non-empty intersection of any two simplices !1,!2 ∈ S is a face of both !1 and !2

Bernadette J. Stolz et al., Chaos, 2017



An Example of a 
Simplicial Complex
(picture from Wikipedia)



CPersistent Homology (PH)
Use ideas from algebraic topology to analyze data



Filtered Simplicial Complex
•A filtered simplicial complex  (i.e., a filtration ) is a sequence of 

simplicial complexes.

• Think of each Si as looking at a data set at a different scale.
• Which topological structures (holes, etc.) exist across a range of values 

of i ? In other words, which structures persist across scales?



A single-parameter filtration: !"# ⊆ !"% ⊆ ⋯ ⊆ !"'



Vietoris–Rips Filtration
(this is what we did with Jigglypuff)

•1. Fix a value of !
•2. For each point in a point cloud, center a ball of radius ! on it

•3. Whenever k+1 of these !-balls all overlap pairwise, create a 
k-simplex

•4. The resulting collection of simplices is a simplicial complex S!
•5. Increment ! and do steps 2–4 again (and keep doing this 
until you have a giant blob)



Birth and Death of Features
•A feature is born in Si if this is the smallest i for which a feature exists

•A feature dies in Si if this is the largest i for which a feature exists
• Some features live forever

• There are various ways to track the birth and death of features in 
different dimensions
• Barcodes

• Persistence diagrams

• …



Barcodes
• Each interval represents a 

feature in dimension n
• Left endpoint = “birth” of a feature

• Right endpoint = “death” of a 
feature

• Visually, longer features are 
“more persistent”



Persistence Diagrams
• If a feature is born at b and dies 
at d, we place a point at (b,d )

•The height above the diagonal 
indicates the persistence

•Pink circles: H0

•Blue squares: H1



C
Topological Data Analysis 

of 2D Voting Data
Michelle Feng & MAP [2021], “Persistent Homology of Geospatial Data: 

A Case Study with Voting”, SIAM Review, Vol. 63, No. 1: 67–99



Quantifying “Political Islands”
How do we detect red voters in a sea of blue? 
(Or light blue voters in a sea of dark blue?)



TDA and Voting Data
•Precinct-level voting data

• Topological methods allow us to find 
and identify holes 
• They also allow us to relate the presence 

of holes to global structure

•Want to find “political islands”
• Red voters in a sea of blue, etc.

• Consider these islands as “holes” in a 
manifold in which all precincts vote 
similarly



Adjacency Simplicial Complex
•Use network adjacency to define simplices

• If n + 1 nodes are all pairwise adjacent, define an n–simplex

•Given appropriate node data (or edge data), we construct a 
filtration 
• The filtration is not determined by distance

• In our data, the filtration parameter tracks the strength of 
preference for a specific candidate
• For example, we can find light-blue precincts in a sea of dark blue



Level-Set VR Complex
•Use data in surface form

• Take map of all precincts with similar voting patterns, and consider 
the outer contour to be the 0 level set of some 3D object

• Evolve the surface outward with forces on a triangular grid 
according to the level-set PDE:

• Take the collection of filled grid cells to be 2-simplices (and take grid 
lines to be edges, and take points to be vertices) 

• The filtration parameter is the time step of the evolution





C

Persistent Homology for Resource 
Coverage: A Case Study of Access to 

Polling Sites
Abigail Hickok, Benjamin Jarman, Michael Johnson, Jiajie Luo, & MAP [2023], 

arXiv:2206.04834 (SIAM Review, in press)



Naive Approach versus PH Approach
•Naive approach
• Select some distance threshold D
• Calculate the percent of people within distance D of a resource cite (e.g., a 

polling site, a DMV location, a park, etc.), or calculate which locations are 
within distance D  of a resource cite

•Persistent homology
• Calculate holes in coverage at all scales (not just an arbitrary threshold D )
• Identify entire zones that are not covered (rather than pointwise locations)



Measure “Distance” in terms of Time 
• Time is a better choice than geographical distance for this application

• Time = Travel Time + Waiting Time
• Travel time to and from a polling site

• Different modes of transportation, with different situations in different zip codes of a city

• Waiting times: coverage radii around locations only start expanding from 0 after the 
waiting time (weighted VR filtration)
• We used 2016 estimates at the level of Congressional districts



Death Values are the Important Feature
• A death value indicates how long it takes to vote (no matter what the birth time is)



Voting Sites in United States Cities

• PH death values indicate when a hole in coverage closes.
• We measure cost in time (including both travel time and waiting time)



CSpiders on Drugs
Michelle Feng & MAP [2020], Physical Review Research, Vol. 2, No. 3: 033426

[one example from this paper]



Spiders Spinning Under the Influence
• The Marshall Space Flight Center studied the webs of spiders that were exposed to 

various chemicals. (There is a NASA Tech Brief from 1995.)
• Earlier work, starting in 1948 by Swiss pharmacologist Peter N. Witt

• They concluded that more toxic chemicals resulted in more deformed spiderwebs



PH with Level-Set 
Complexes on 
Spiderwebs

Pink circles: H0

Blue squares: H1





CConclusions



Conclusions
• Topological data analysis (TDA), such as by computing persistent 

homology (PH), can give insights into structures and dynamics in 
spatial complex systems.

•Persistent homology of spatial and spatiotemporal data
• By looking at 2D data, we can do systematic comparisons between different types of 

constructions (topologically, fewer things can happen)

• Incorporate information from applications of interest into PH approaches


