

On Taming Differentiable Logics

Reynald Affeldt, Alessandro Bruni, Matthew Daggitt, Ekaterina Komendantskaya, Natalia Ślusarz, **Kathrin Stark**, Robert Stewart

This Work

Reynald Affeldt

Alessandro Bruni

Matthew Daggitt

Katya Komendantskaya

Natalia Ślusarz

Kathrin Stark

Rob Stewart

Towards Ensuring that Neural Networks Satisfy Verification Properties

We want a neural network N to satisfy certain properties P; for example:

 $\begin{array}{l} \boldsymbol{\epsilon} & -\boldsymbol{\delta} \text{ robustness} \\ \text{Given a vector } \boldsymbol{v}, N \text{ is said to be } \boldsymbol{\epsilon} & -\boldsymbol{\delta} \text{ robust w.r.t } \boldsymbol{v} \text{ if:} \\ \forall \boldsymbol{x}. \, | \boldsymbol{x} & -\boldsymbol{v} |_{L_{\infty}} \leq \boldsymbol{\epsilon} \Rightarrow |N(\boldsymbol{x}) - N(\boldsymbol{v})|_{L_{\infty}} \leq \boldsymbol{\delta}' \end{array}$

But: Even the most accurate neural networks fail even the most natural verification properties, such as robustness [Fischer et al., '19].

A possible solution: Translate the desired property *P* into a differentiable **loss** function that punishes not satisfying *P* (Differentiable Logic/DL) in the tradition of property-based training for neural networks [Giunchiglia et al., IJCAI '22]

Towards PL Tools for Neural Networks

A common framework

for different differentiable logics that allows to give a uniform semantics: LDL (Logic of Differentiable Logic) [Ślusarz et al., LPAR '23]

Goal: A generic framework in which logical/geometric properties of different DLs can be formalized/proven.

A common framework to **compare properties** of different DLs A **mechanization*** in Coq/ MathComp, allowing to easily test out new extensions/ different approaches [Affeldt et al., ITP '24]

A common framework for different differentiable logics that allows to give a uniform semantics: LDL (Logic of Differentiable Logic) [Ślusarz et al., LPAR '23]

Goal: A generic framework in which logical/geometric properties of different DLs can be formalized/proven.

A common framework to **compare properties** of different DLs A **mechanization*** in Coq/ MathComp, allowing to easily test out new extensions/ different approaches [Affeldt et al., ITP '24]

Possible Differentiable Logics

- DL2 [Fischer et al., '19]
- STL [Varnai, Dimarogonas '20]
- Fuzzy logics [Krieken et al. '21]
 - Gödel
 - Łukasiewicz
 - Yager
 - Product

But:

- 1. Only propositional fragment
- 2. Syntax/semantics/pragmatics partially not wellseparated
- 3. Lack of unified general syntax and semantics

LDL: A Logic of Differentiable Logics Dependently Typed Version from [Affeldt et al., ITP '24]

Example: For $\epsilon - \delta$ robustness, given concrete values for $\epsilon/\delta/v/N$ both the L_{∞} norm and the right hand of the implication can be expressed via LDL.

One Logic – Several Interpretations

	Generalizat	ion	
	to n-ary		negation Strong
Gödel	$\min[s]_{C}$	$\max [s]_{G}$	
Łukasiewicz	$\max\left[\sum_{a \in \llbracket s \rrbracket_{E}} a - s + 1, 0\right]$	$\frac{\min\left[\sum_{a \in [\![s]\!]_{\mathbf{L}}} a, 1\right]}{\left[\sum_{a \in [\![s]\!]_{\mathbf{L}}} a, 1\right]}$	$\frac{1 - [e]_{L}}{1 - [e]_{L}}$
Yager	$\max\left[1-\left(\sum_{a\in [s]_{\mathrm{Y}}}(1-a)^p\right)\right]$	$\begin{bmatrix} 1/p \\ 0 \end{bmatrix} \min\left[\left(\sum_{a \in \llbracket s \rrbracket_{\mathrm{Y}}} a^{p}\right)^{1/p}, 1\right]$	$1 1 - [[e]]_Y Siewicz [0, 1]$
product	$\prod_{a \in \llbracket s \rrbracket_{\rm P}} a$	fold $(\lambda x \ y \ . \ x + y - xy) \ 0$	$ [s]_{P} 1 - [e]_{P} $
DL2	$\sum_{a \in [\![s]\!]_{\text{DL}^2}} a$	$(-1)^{ s +1} \cdot \prod_{a \in [\![s]\!]_{\mathrm{DL}^2}} a$	undefined [†] STL Yager
STL	and _S [[s]] _{STL} No	ot part of	$-\llbracket e \rrbracket_{\text{STL}} \qquad (-\infty, +\infty) \qquad \textcircled{1}$
Bool	$\bigwedge_M \llbracket s \rrbracket_B$ origin	al definition	
	$\llbracket e_1 = e_2 \rrbracket$	$\llbracket e_1 \leq e_2 \rrbracket$	[[True] [Not part]
f Origin [0,∝	ally: $[e_1] = -[e_2]$ $[e_1] = [e_2]$ $max \left[1 - \left \frac{[e_1] - [e_2]}{[e_1] + [e_2]}\right , 0\right]$	$ \begin{aligned} &\text{if } \llbracket e_1 \rrbracket = -\llbracket e_2 \rrbracket \\ &\text{then } \llbracket e_1 \rrbracket \leq \llbracket e_2 \rrbracket \\ &\text{else} \\ &\max \left[1 - \max \left[\frac{\llbracket e_1 \rrbracket - \llbracket e_2 \rrbracket}{\llbracket e_1 \rrbracket + \llbracket e_2 \rrbracket}, 0 \right], 0 \right] \end{aligned} $	1 Of original definition DL2 Product
DL2	$- \llbracket e_2 \rrbracket_{\mathrm{DL}2} - \llbracket e_1 \rrbracket_{\mathrm{DL}2} $	$-\max\left[\llbracket e_1 \rrbracket_{\text{DL2}} - \llbracket e_2 \rrbracket_{\text{DL2}}, 0\right]$	
STL	$- \llbracket e_2 \rrbracket_{\mathrm{STL}} - \llbracket e_1 \rrbracket_{\mathrm{STL}} $	$\llbracket e_2 \rrbracket_{ ext{STL}} - \llbracket e_1 \rrbracket_{ ext{STL}}$	$+\infty$ $-\infty$
Bool	$\llbracket e_1 \rrbracket_{\mathrm{B}} = \llbracket e_2 \rrbracket_{\mathrm{B}}$	$\llbracket e_1 \rrbracket_{\mathrm{B}} \leq \llbracket e_2 \rrbracket_{\mathrm{B}}$	True False Godel
$and_S \ [a_1, \ldots,$	$[a_M] = \begin{cases} \displaystyle rac{\sum_i a_{\min} e^{ ilde{a_i}} e^{ u ilde{a_i}}}{\sum_i e^{ u ilde{a_i}}} & ext{if } a_{\max} \\ \displaystyle rac{\sum_i a_i e^{- u ilde{a_i}}}{\sum_i e^{- u ilde{a_i}}} & ext{if } a_{\max} \\ \displaystyle 0 & ext{if } a_{\max} \end{cases}$		$(constant) \\ \begin{bmatrix} a_1, \dots, a_M \end{bmatrix} \\ \hline a_{\min} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

 or_S is analogous to and_S

A common framework

for different differentiable logics that allows to give a uniform semantics: LDL (Logic of Differentiable Logic) [Ślusarz et al., LPAR '23]

Goal: A generic framework in which logical/geometric properties of different DLs can be formalized/proven.

A common framework to **compare properties** of different DLs A **mechanization*** in Coq/ MathComp, allowing to easily test out new extensions/ different approaches [Affeldt et al., ITP '24]

A common framework

for different differentiable logics that allows to give a uniform semantics: LDL (Logic of Differentiable Logic) [Ślusarz et al., LPAR '23]

Goal: A generic framework in which logical/geometric properties of different DLs can be formalized/proven.

A common framework to **compare properties** of different DLs A **mechanization*** in Coq/ MathComp, allowing to easily test out new extensions/ different approaches [Affeldt et al., ITP '24]

Properties of Interest

- **Soundness**: If a property interprets as true/false in the DL; it is true in Boolean logic
- **Compositionality**: Composition of negation with conjunction/disjunction; idempotence, commutativity, and associativity of conjunction/disjunction
- **Shadow-lifting:** Gradual improvement in training

The bad news: None of the existing DLs satisfies all of these requirements [Varnai, Dimarogonas '20] **Conclusion**: We might need to provide support for incorporating a range of DLs for different scenarios

Properties of Interest Compositionality

▶ Definition 5 (Commutativity, idempotence, and associativity of \bigwedge_M). Given a DL, the interpretation function of conjunction is commutative if for any permutation π of the integers $i \in \{1, \ldots, M\}$ we have

$$\left[\left[\bigwedge_{M} (p_0, \dots, p_M)\right]\right]_{DL} = \left[\left[\bigwedge_{M} (p_{\pi(0)}, \dots, p_{\pi(M)})\right]\right]_{DL}$$

It is idempotent and associative if we have

$$\begin{bmatrix} \bigwedge_{M} (p, \dots, p) \end{bmatrix}_{DL} = \llbracket p \rrbracket_{DL},$$
$$\begin{bmatrix} \bigwedge_{M} \left(\bigwedge_{M} (p_{0}, p_{1}), p_{2} \right) \end{bmatrix}_{DL} = \begin{bmatrix} \bigwedge_{M} \left(p_{0}, \bigwedge_{M} (p_{1}, p_{2}) \right) \end{bmatrix}_{DL}$$

Properties of Interest Soundness

Soundness. Given a DL, an expression e, and a Boolean value b, the DL is sound if:

 $\llbracket e \rrbracket_{DL} = \llbracket b \rrbracket_{DL} \implies \llbracket e \rrbracket_{B} = b$

	Soundness
Gödel	Yes
Łukasiewicz	No
Yager	No
Product	Yes
DL2	Yes*
STL	?

*negation-free fragment

'23]

On Soundness

• Clear if it's on closed intervals – see [Ślusarz et al., LPAR '23]

- How to even state soundness for open intervals – i.e., for DL2/STL?

Attempt 1: Add $-\infty$ and $+\infty$ as constants to the domain; keep the previous soundness statement.

• Vacuous proof – no formula evaluates to $-\infty$ or ∞

Not a problem in fuzzy logics – e.g., $[3 = 3]_P = 1$

Attempt 2: Keep the open interval intact; re-define soundness in terms of intervals: If the interpretation of the formula *e* is greater or equal to 0, then $[\![e]\!]_B = True$, else $[\![e]\!]_B = False$.

• But: Negation is no longer sound. If $[3 = 3]_{STL} = 0$, then also $[\neg (3 = 3)]_P = 0$

Exclude 0? => Complicates interpretations/ not differentiable

Attempt 3: Use intervals to define truth/ remove negation.

Properties of Interest Shadow Lifting [Varnai, Dimarogonas '20]

▶ Definition 6 (Shadow-lifting property [27]). The DL satisfies the shadow-lifting property if, for any $[\![p]\!]_{DL} \neq 0$:

$$\frac{\partial \left[\!\!\left[\bigwedge_{M}(p_{0},\ldots,p_{i},\ldots,p_{M})\right]\!\!\right]_{DL}}{\partial [\![p_{i}]\!]_{DL}}\right|_{p_{j}=p \ where \ i\neq j} > 0$$

holds for all $0 \leq i \leq M$, where ∂ denotes partial differentiation.

An Overview

	DL2	Gödel	Łuka- siewicz	Yager	Product	STL
Weak Smoothness	Yes*	No	No	No	Yes*	Yes
Shadow-Lifting	Yes	No	No	No	Yes	Yes [Varnai et al. '20]
Scale Invariance	Yes	Yes	No	No	No	Yes [Varnai et al. '20]
Negation	No	Yes	Yes	Yes	Yes	Yes
Idempotence	No	Yes [Krieken et al. '21]	No [Cintula et al. '11]	No [Klement et al. '04]	No [Cintula et al. '11]	Yes [Varnai et al. '20]
Commutativity	Yes	Yes [Krieken et al. '21]	Yes [Varnai et al. '20]			
Associativity	Yes	Yes [Krieken et al. '21]	No [Varnai et al. '20]			
Soundness	Yes^{\dagger}	Yes	No	No	Yes	Yes [†]

* Smoothness in propositional case [†] Negation-free fragment

A common framework

for different differentiable logics that allows to give a uniform semantics: LDL (Logic of Differentiable Logic) [Ślusarz et al., LPAR '23]

Goal: A generic framework in which logical/geometric properties of different DLs can be formalized/proven.

A common framework to **compare properties** of different DLs A **mechanization*** in Coq/ MathComp, allowing to easily test out new extensions/ different approaches [Affeldt et al., ITP '24]

A common framework

for different differentiable logics that allows to give a uniform semantics: LDL (Logic of Differentiable Logic) [Ślusarz et al., LPAR '23]

Goal: A generic framework in which logical/geometric properties of different DLs can be formalized/proven.

A common framework to **compare properties** of different DLs A **mechanization*** in Coq/ MathComp, allowing to easily test out new extensions/ different approaches [Affeldt et al., ITP '24]

Syntax

Inductive flag := def | undef.

```
Inductive ldl_type :=
Bool_T of flag | Index_T of nat | Real_T | Vector_T of nat | Fun_T of nat & nat.
```

```
Definition Bool_T_undef := Bool_T undef.
1
   Definition Bool T def := Bool T def.
2
    Inductive comparison := cmp_le | cmp_eq.
3
\mathbf{4}
    Inductive expr : ldl_type -> Type :=
\mathbf{5}
                 : R -> expr Real T
     | ldl real
6
                 : forall p, bool -> expr (Bool T p)
     | ldl bool
7
     | ldl_idx
                 : forall n, 'I_n -> expr (Index_T n)
8
     | ldl_vec
                 : forall n, n.-tuple R -> expr (Vector_T n)
9
     | ldl_and
                 : forall x, seq (expr (Bool_T x)) -> expr (Bool_T x)
10
                 : forall x, seq (expr (Bool_T x)) -> expr (Bool_T x)
     | ldl_or
11
                 : expr Bool_T def -> expr Bool_T def
     | ldl_not
12
     | ldl cmp
                 : forall x, comparison -> expr Real T -> expr Real T -> expr (Bool T x)
13
                 : forall n m, (n.-tuple R -> m.-tuple R) -> expr (Fun T n m)
     | ldl_fun
14
                  : forall n m, expr (Fun_T n m) -> expr (Vector_T n) -> expr (Vector_T m)
     | ldl app
15
     ldl_lookup : forall n, expr (Vector_T n) -> expr (Index_T n) -> expr Real_T.
16
```

Translation

```
Definition type_translation (t : ldl_type) : Type :=
1
   match t with
2
  | Bool_T x => R
3
4 | Real_T => R
 | Vector_T n => n.-tuple R
5
  | Index_T n => 'I_n
6
7 | Fun_T n m => n.-tuple R -> m.-tuple R
8
   end.
  Fixpoint stl_translation {t} (e : expr t) : type_translation t :=
    match e in expr t return type_translation t with
    | ldl_and _ (e0 :: s) => let A := map stl_translation s in
                                     := stl_translation e0 in
                             let a0
                             let a_min := \big[minr/a0]_(i <- A) i in</pre>
                             if a_min < 0 then stl_and_lt0 (a0 :: A) else
                             if a_min > 0 then stl_and_gt0 (a0 :: A) else
                             0
    | `~ E1
                          => - {[ E1 ]}
                          => {[ E2 ]} - {[ E1 ]}
    | E1 `<= E2
    ... (* see [29] for omitted connectives *)
    end where "{[ e ]}" := (stl_translation e).
```

On the Coq Formalization Overview

	gaps		Translate to
File	Contents	L.o.c.	corresponding
Additions to MATHC	underlying		
$mathcomp_extra.v$	Lemmas itera'ed min/max, etc.	EO .	definitions
analysis_extra.v	L'Hôpital's rule, Cauchy's MVT (§ 5.3), etc.	820	
Generic logic and gen	neric definitions of properties		
ldl.v	LDL syntax and semantics (8 2), suadow-lifting (Sect. 5.1)	417	Helped in
Soundness, logical and	closing		
dl2.v	DL2: logical (§ 4), geometric (§ 5.2)	250	previous gaps
fuzzy.v	Gödel, Łukasiewicz, Yager, product:	731	
	logical (§ 4), geometric (§ 5.2)		
stl.v	STL; logical (§ 4), geometric (§ 5.4)	977	
Alternative formalisa	Helped in finding		
dl2_ereal.v	DL2: logical (\S 4.2)	411	the right
<pre>stl_ereal.v</pre>	STL: logical (§ 4.2)	362	definitions
	Total	<i>4</i> 281	

https://github.com/ndslusarz/formal_LDL

23

This Talk Future Work

A common framework

for different differentiable logics that allows to give a uniform semantics: LDL (Logic of Differentiable Logic) [Ślusarz et al., LPAR '23]

Connection of logics with the logics of Lawvere quantale [Bacci et al., '23] **Goal**: A generic framework in which logical/geometric properties of different DLs can be formalized/proven.

A common framework to **compare properties** of different DLs

Revised negation

A **mechanization*** in Coq/ MathComp, allowing to easily test out new extensions/ different approaches [Affeldt et al., ITP '24]

* So far: Without quantifiers

In progress

The Question of Quantifiers

- **Motivation**: More expressive/required to internally interpret different forms of robustness
- On finite domains such as Bool/ Index n (e.g., [Krieken et al. '21]):
 - Use finitely composed conjunction and disjunction: Given $\llbracket \tau \rrbracket = \llbracket d_1, \dots, d_n \rbrace$, have $\llbracket \forall x : \tau. e \rrbracket = \llbracket e \lfloor x / d_1 \rfloor \dots e \lfloor x / d_n \rrbracket$
 - Analogously for $\exists x : \tau. e$ and disjunction.

Infinite domains

- [Fischer et al. '19]: Interpret universally quantified formulae via expectation maximization methods
- In [Ślusarz et al., LPAR '23]: Suggestion of a language-independent quantifier

$$\llbracket \forall x : \tau. e \rrbracket_{L}^{N,Q,\Gamma} = \mathbb{E}_{\min} \left[\left(\lambda y. \llbracket e \rrbracket^{N,Q,\Gamma[x \to y]} \right) (Q[x]) \right]$$

where $\mathbb{E}_{\min} [g(\mathbf{X})] = \lim_{\gamma \to 0} \int_{x \in \mathbb{B}_{x_{\min}}^{\gamma}} p_X(x)g(x)dx$

• ... and existential quantifier as maximum.

Practical algorithm for computing it?

• ... to be continued

Any Questions?

Published Papers

Logic of differentiable logics: Towards a uniform semantics of DL https://arxiv.org/pdf/2303.10650 Natalia Ślusarz, Ekaterina Komendantskaya, Matthew L Daggitt, Robert Stewart, KS (LPAR '23)

Taming Differentiable Logics with Coq Formalisation Reynald Affeldt, Alessandro Bruni, Ekaterina Komendantskaya, Natalia Ślusarz, KS (ITP '24)

Coq Development

https://github.com/ndslusarz/formal_L DL

Parts of the project are looking for a PhD student:

Vacancy: PhD in Computer Science

Title: Formal Verification of AI Interfaces

Advisors: Ekaterina Komendantskaya (Southampton University, UK), Alessandro Bruni (IT University of Copenhagen, Denmark), Reynald Affeldt (AIST, Japan)

Start Date: As soon as the right candidate is found

Location: Southampton University, UK; with collaborative visits involving researchers at AIST, Japan and IT University of Copenhagen, Denmark.

September 9, 15:00, ITP