
How to Make Mathematicians
Into Programmers

Will Crichton

(And Vice Versa)

Assistant Professor, Brown University

Mathematicians working on paper

Developers working with weak type systems

🤝 formalized
mathematics

🤝 formalized
mathematics

(And Vice Versa)

How to Make Mathematicians
Into Programmers

Learning Lean

https://worrydream.com/LearnableProgramming/

Tasks:

• What problem am I solving?
• What is the state of my solution?
• What tactic should I use?
• What theorem should I use?
• What have I tried already?

What theorem should I use?
Which theorem defines equality over
an expression that unifies with a sub-
expression of the goal?

induction

Tactics
rw rfl

Definitions
+ ℕ

Theorems
* + 012 Peano ^ ≤

a + b = b + a

succ n = n + 1

a + succ d = succ (a + d)

0 + n = n n + 0 = n

succ a + b = succ (a + b)

induction

Tactics
rw rfl

Definitions
+ ℕ

Theorems
* + 012 Peano ^ ≤

a + b = b + a

succ n = n + 1

a + succ d = succ (a + d)

0 + n = n n + 0 = n

succ a + b = succ (a + b)
Key ideas:

Memory vs. perception
🧠 👀

“The Role of Working Memory in Program Tracing”
“A Representational Analysis of Numeration Systems”

See:

Cognitive load theory
See: John Sweller’s publications

See:Language levels! “The Structure and Interpretation of the Computer Science Curriculum”
How to Design Programs

What concepts and skills does a
person need to effectively use Lean?

Dependent types
Common theorems
Tactics

Model a domain
Prove a theorem
Debug a failure

Undergrad math major
Professional C programmer
Experienced Coq dev

Decompose a problem
Find a theorem
Read the docs

“declarative” “procedural”

Natural Number Game
Concepts Skills
• Syntax
• Props & tactics
• Common tactics
• Basic arithmetic

theorems
• Formalizable

statements/proofs

• Generating syntax
• Selecting tactics
• Finding theorems
• Proof

decomposition

Theorem Proving in Lean
Concepts Skills

• ?• Syntax
• Dependent types
• Term language
• Propositional logic
• Term vs. tactic

proofs
• Forall/exists

quantifiers
• Module system
• Inductive types &

derived principle
• Mutual recursion
• Type classes and

deriving

1. Are learners actually learning?
2. What concepts/skills are missing?

https://rust-book.cs.brown.edu

Crichton and Krishnamurthi. “Profiling Programming Language Learning” OOPSLA ‘24

Anyone can do this!

Chapter on ownership

Crichton and Krishnamurthi. “Profiling Programming Language Learning” OOPSLA ‘24

1. Collect frequent StackOverflow questions about ownership

2. Ask Rust learners to solve these questions

3. Qualitatively analyze their misconceptions

4. Develop new materials to address the specific misconceptions

5. Deploy the materials in the online textbook

6. Measure effect on those same questions

Crichton, Gray, and Krishnamurthi. “A Grounded Conceptual Model for Ownership Types in Rust” OOPSLA ‘23

Steps to improving ownership pedagogy

Anyone can do this (with enough effort)!

Using Lean

What facts have been
locally created?

What am I trying to
prove right now?

At a given point in a
proof…

Abstract repeated details

Group related info

“How can I get rid of p.1 + el1.prevMargin from both sides?”

timeout at `whnf`, maximum
number of heartbeats (200000)

∀ a b : ℚ, a ≤ a + b → 0 ≤ b

How do we help people find
nonneg_of_le_add_right?

Loogle, Mathlib docs: integration + training

AI tools: make them… better??

Search tactics: facilitate writing MWE

• Read up on psych research (the replicable kinds)
- Cognitive psychology: memory, perception, mental models, logical reasoning
- Educational psychology: cognitive load, skill acquisition, contrasting cases
- Cognitive engineering: representations, user modeling, trade-offs
- Conspicuously avoided: HCI, “intuitive” interfaces, 1-hour user studies, …

• Build the infrastructure for evaluating human factors
- Textbook quizzes, Zulip questions are both potential data sources
- Validated assessments of competency (see: “Force Concept Inventory”)
- Never underestimate the power of talking to people and watching them work
- Conspicuously avoided: IDE telemetry, user surveys

• Improve the cognitive efficiency of devtools
- Reduce the friction of discovery (incl. discovering the discovery tools)
- Visualize, don’t dump information (incl. docs, error messages, etc)
- Conspicuously avoided: proof widgets, AI consultants

Calls to action

