How to Make Mathematicians Into Programmers (And Vice Versa)

Will Crichton

Assistant Professor, Brown University

Mathematicians working on paper

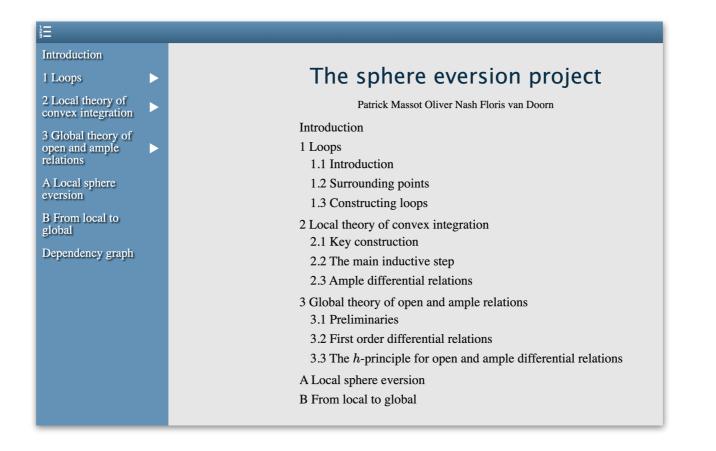
A CLASSIFICATION OF IMMERSIONS OF THE TWO-SPHERE

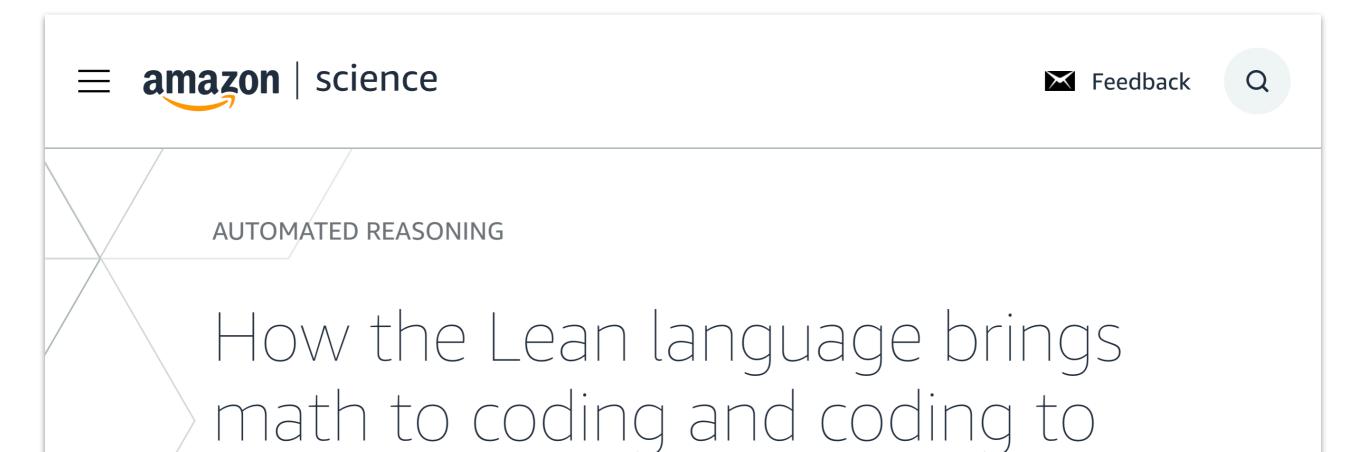
BY STEPHEN SMALE

An immersion of one C^1 differentiable manifold in another is a regular map (a C^1 map whose Jacobian is of maximum rank) of the first into the second. A homotopy of an immersion is called regular if at each stage it is regular and if the induced homotopy of the tangent bundle is continuous. Little is known about the general problem of classification of immersions under regular homotopy. Whitney [5] has shown that two immersions of a *k*-dimensional manifold in an *n*-dimensional manifold, $n \ge 2k+2$, are regu-

Developers working with weak type systems

1462 1463 1464 1465	<pre>- hbtype = *p++; - n2s(p, payload);</pre>		
1466	-		
1467	<pre>if (s->msg_callback)</pre>	1462	<pre>if (s->msg_callback)</pre>
1468	<pre>s->msg_callback(0, s->version,</pre>	1463	<pre>s->msg_callback(0, s->version,</pre>
TLS1_RT_HEARTBEAT,		TLS1_RT_HEARTBEAT,	
1469	&s->s3->rrec.data[0], s->s3-	1464	&s->s3->rrec.data[0], s->s3-
	>rrec.length,		>rrec.length,
1470	<pre>s, s->msg_callback_arg);</pre>	1465	<pre>s, s->msg_callback_arg);</pre>
1471		1466	
		1467	+ /* Read type and payload length first */
		1468	+ if (1 + 2 + 16 > s->s3->rrec.length)
		1469	+ return 0; /* silently discard */
		1470	+ hbtype = *p++;
		1471	+ n2s(p, payload);





Uses of the functional programming language include formal mathematics, software and hardware verification, AI for math and code synthesis, and math and computer science education.

By Leo de Moura

math

C Share

August 16, 2024

How the Lean language brings math to coding and coding to math

Uses of the functional programming language include formal mathematics, software and hardware verification, AI for math and code synthesis, and math and computer science education.

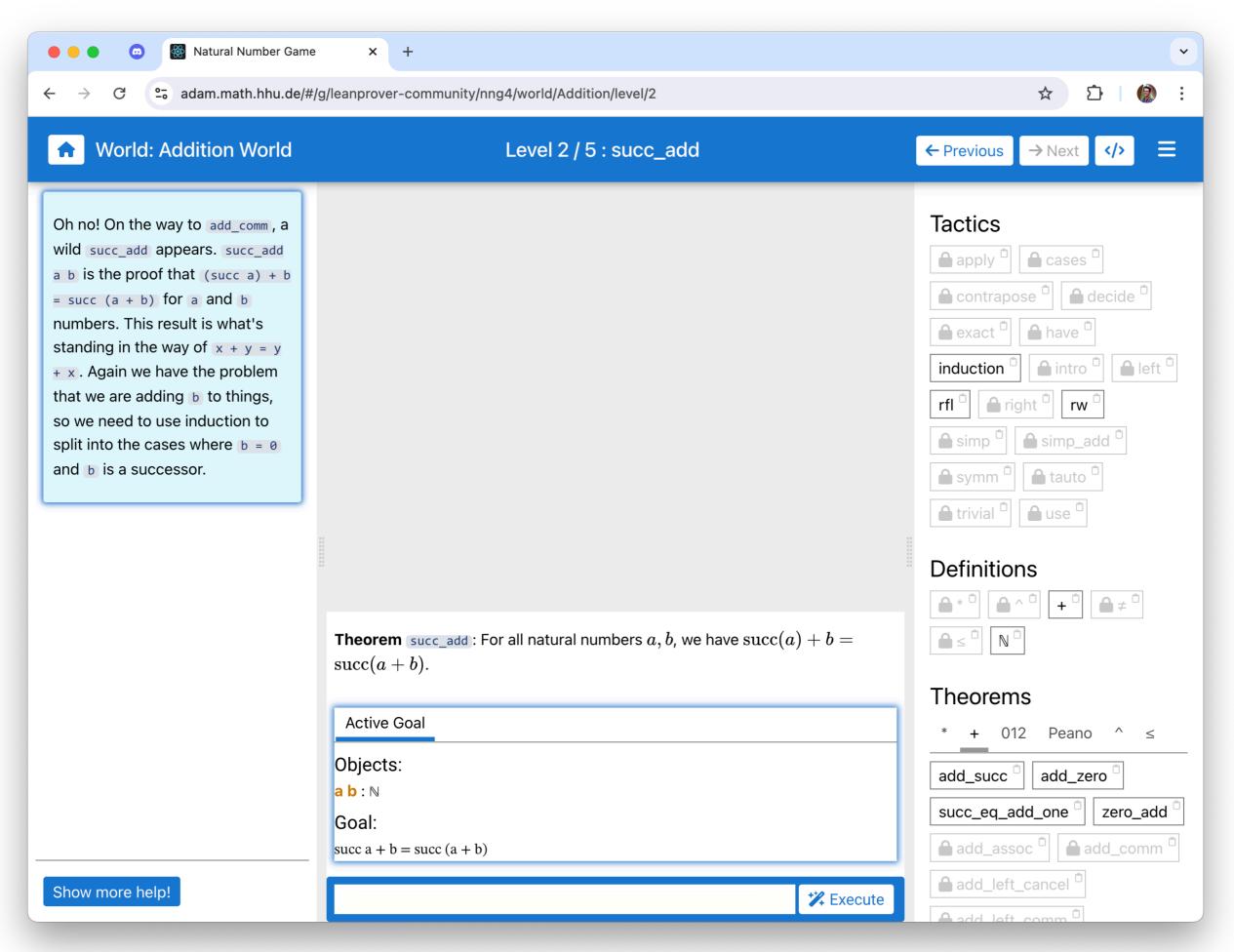
By Leo de Moura

🚰 Share

August 16, 2024

How to Make Mathematicians Into Programmers (And Vice Versa)

Learning Lean



https://worrydream.com/LearnableProgramming/

Oh no! On the way to

 \equiv

add_comm, a wild succ_add appears. succ_add a b is the proof that (succ a) + b = succ(a + b) for a and b numbers. This result is what's standing in the way of x + y = y + x. Again we have the problem that we are adding **b** to things, so we need to use induction to split into the cases where b = and b is a successor.

- What problem am I solving?
- What is the state of my solution?
- What tactic should l use?
- What theorem should l use?
- What have I tried already?

lactics
apply ¹ cases ¹
🔒 contrapose 🏾 🔒 decide 🗘
🔒 exact ^û 🔒 have ^û
induction ¹ h intro ¹ h left ¹
rfl ¹ right ¹ rw ¹
simp ¹ simp_add ¹
🔒 symm 🛍 🔒 tauto 🖞
🔒 trivial 🛍 🔒 use 🗘
Definitions
$ \textcircled{\bullet} * \textcircled{\circ} \qquad \textcircled{\bullet} \wedge \textcircled{\circ} \qquad + \textcircled{\circ} \qquad \textcircled{\bullet} \neq \textcircled{\circ} $

 \mathbb{N}

add left eg self

Theorem $succ_add$: For all natural numbers a, b , we have $succ(a) + b = succ(a + b)$.	Theorems * + 012 Peano ^ ≤
Active Goal	add_comm add_succ add_zero succ_add
Objects: a b : N	succ_eq_add_one zero_add
Goal: succ $a + b = succ (a + b)$	add_assoc add_left_cancel
	add_left_comm [©]

Execute

← Previous → Next </>

 \equiv

Oh no! On the way to add_comm, a wild succ_add appears. succ_add a b is the proof that (succ a) + b = succ (a + b) for a and b numbers. This result is what's standing in the way of x + y = y+ x. Again we have the problem that we are adding b to things, so we need to use induction to split into the cases where b = 0 and b is a successor.

You might want to think about whether induction on **a** or **b** is the best idea.

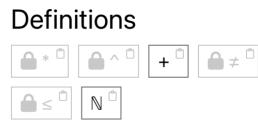
What theorem should I use?

Which theorem defines equality over an expression that unifies with a subexpression of the goal?

Theorem	<code>succ_add</code> : For all natural numbers a,b , we have $\mathrm{succ}(a)+b=$
$\operatorname{succ}(a +$	<i>b</i>).

Active Goal	
Objects:	
a b : ℕ	
Goal:	
succ $a + b = succ (a + b)$	
induction b with b hb	Retry
Active Goal 2	
Objects:	
a:ℕ	
Goal:	
$\operatorname{succ} a + 0 = \operatorname{succ} (a + 0)$	
	* Execute

Tactics
apply ¹ cases ¹
🔒 contrapose 🕯 🔒 decide 🍅
exact ⁰ have ⁰
induction ¹ intro ¹ left ¹
rfl 🗘 🔒 right 🗘 rw 🗘
simp ^û simp_add ^û
🔒 symm ^û
🖨 trivial [©]



Theorems

* +	012	Peano	^	\leq
add_co	mm 🗋	add_s	ucc 🗅	
add_ze	ro	succ_ad	d 📋	
succ_e	q_add_	_one 🗂	zero	_add 📋
add_	assoc			
add_	left_ca	incel [🖞]		
add_	left_co	omm [©]		
a dd	left eo	a self ^û		

 $\leftarrow \text{Previous} \quad \rightarrow \text{Next} \quad </>$

add_succ

 \times

(a d : ℕ) : a + MyNat.succ d
= MyNat.succ (a + d)

add_succ a b is the proof of a + succ b = succ (a + b).

Oh no! On the way to add_comm, a wild succ_add appears. succ_add a b is the proof that (succ a) + b = succ (a + b) for a and b numbers. This result is what's standing in the way of x + y = y+ x. Again we have the problem that we are adding b to things, so we need to use induction to split into the cases where b = 0 and b is a successor.

You might want to think about whether induction on **a** or **b** is the best idea.

Theorem succ_add: For all natural numbers a, b , we have succ $(a succ(a + b))$.) + b =
Active Goal	
Objects: a b : ℕ	
Goal:	
$\operatorname{succ} a + b = \operatorname{succ} (a + b)$	
induction b with b hb	Retry
Active Goal Goal 2	
Objects: a : ℕ	
Goal:	
$\operatorname{succ} a + 0 = \operatorname{succ} (a + 0)$	
	🗱 Execute

Theorems

 \equiv

Oh no! On the way to add_comm, a wild succ_add appears. succ_add a b is the proof that (succ a) + b = succ (a + b) for a and b numbers. This result is what's standing in the way of x + y = y+ x. Again we have the problem that we are adding b to things, so we need to use induction to split into the cases where b = 0 and b is a successor.

You might want to think about whether induction on **a** or **b** is the best idea.

	* + 012 Peano ^ ≤
	a + b = b + a
	succ $n = n + 1$
	succ a + b = succ (a + b)
	a + succ d = succ (a + d)
	$0 + n = n \qquad n + 0 = n$
Theorem succ_add : For all natural number $succ(a + b)$.	Tactics
Active Goal	induction rw rfl
Objects:	Definitions
a b : ℕ	+ N
Goal:	
$\operatorname{succ} a + b = \operatorname{succ} (a + b)$	
induction b with b hb	
Active Goal Goal 2	
Objects:	
a : N	
Goal:	
$\operatorname{succ} a + 0 = \operatorname{succ} (a + 0)$	

add_comm ^① add_succ ^①
add_zero ⁽¹⁾ succ_add ⁽¹⁾
succ_eq_add_one $$ zero_add $$
add_assoc
add_left_cancel
add_left_comm [©]
add left eg self

Key ideas:

Memory vs. perception

See: "The Role of Working Memory in Program Tracing" "A Representational Analysis of Numeration Systems"

Cognitive load theory

See: John Sweller's publications

Theorems * + 012 Peano ^ \leq a + b = b + a succ n = n + 1 succ a + b = succ (a + b) a + succ d = succ (a + d) 0 + n = n n + 0 = n n + 0 = n

rfl

Tactics

icc_add

Definitions + N

Tactics
apply ¹ cases ¹
🔒 contrapose 🏛 decide 🕯
🔒 exact ^û 🔒 have ^û
induction ¹ intro ¹ left ¹
rfl 🗘 🔒 right 🗘 rw 🗘
simp ¹ simp_add ¹
🔒 symm ^û 🔒 tauto ^û
🔒 trivial 🗘 🔒 use 🗘
Definitions

→ Next

Ξ

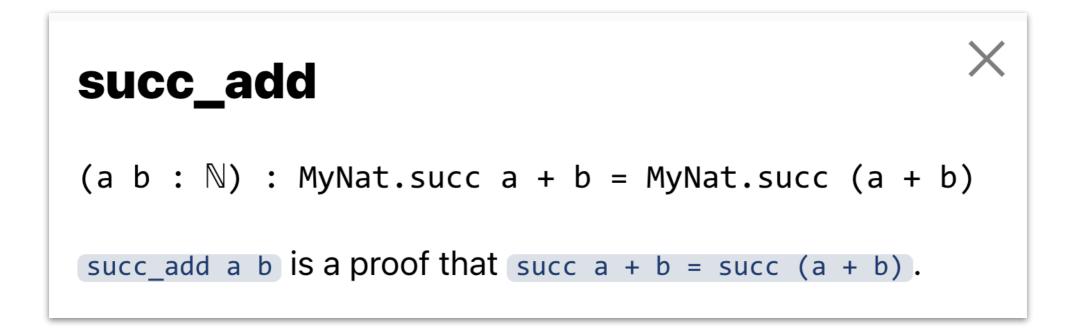
← Previous

 \mathbb{N}

🔒 add left eg self 🖱

Theorems			
* + 012 Peano	^ <		
add_comm ^① add_s			
add_zero $$ succ_add $$			
succ_eq_add_one	zero_add [^]		
add_assoc 🗅			
add_left_cancel 🗅			
add_left_comm [©]			

<pre>inding in the way of #</pre>					
a + b computes the sum of a and b. The meaning of this notation is type-					
things, so we need use induction to $succ a + 0 = succ (a + 0)$					
lit into the cace	Execute Execute				



Language levels!

See: "The Structure and Interpretation of the Computer Science Curriculum" How to Design Programs

"declarative"

Dependent types Common theorems Tactics

"procedural"

Decompose a problem Find a theorem Read the docs

What concepts and skills does a person need to effectively use Lean?

Undergrad math major Professional C programmer Experienced Coq dev Model a domain Prove a theorem Debug a failure Are learners actually learning?
 What concepts/skills are missing?

Natural Number Game

Theorem Proving in Lean

<u>Concepts</u>

- Syntax
- Props & tactics
- Common tactics
- Basic arithmetic theorems
- Formalizable statements/proofs

<u>Skills</u>

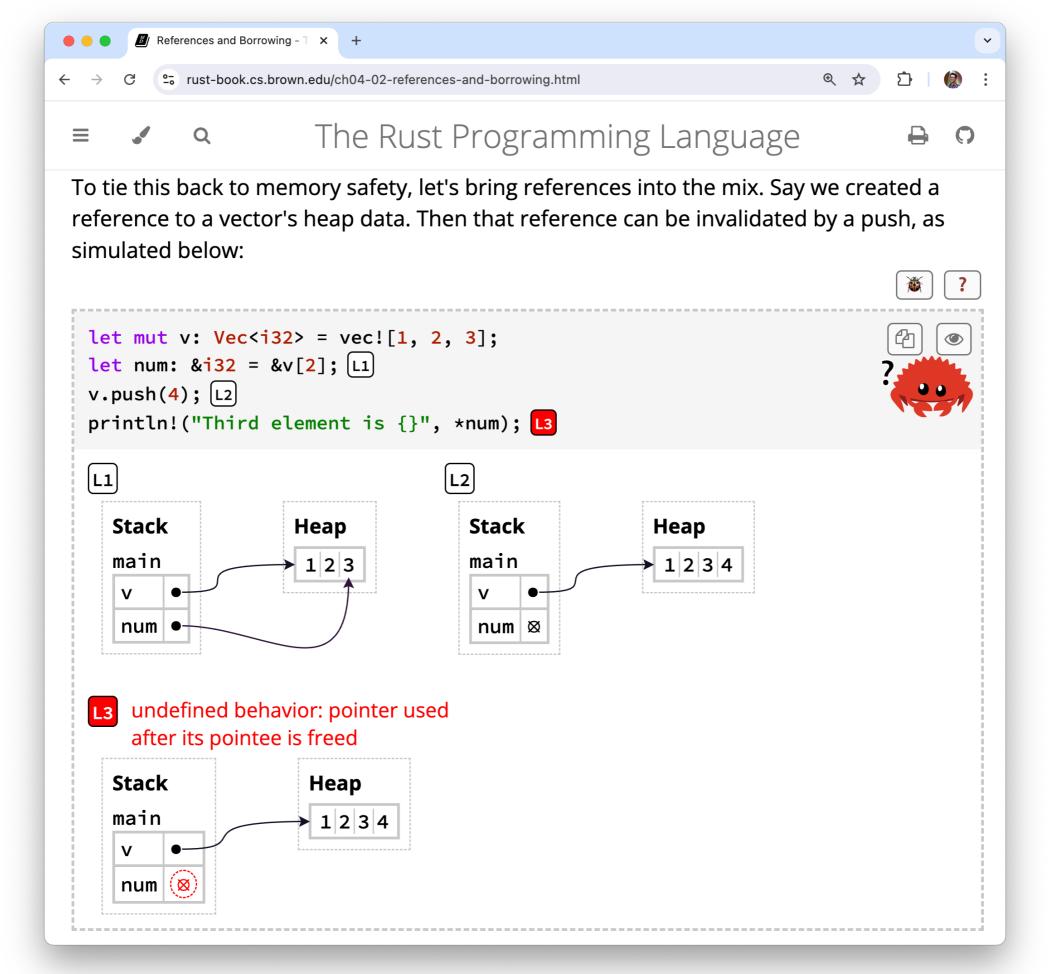
- Generating syntax
- Selecting tactics
- Finding theorems
- Proof decomposition

<u>Concepts</u>

- Syntax
- Dependent types
- Term language
- Propositional logic
- Term vs. tactic proofs
- Forall/exists quantifiers
- Module system
- Inductive types & derived principle
- Mutual recursion
- Type classes and

<u>Skills</u>

• ?



https://rust-book.cs.brown.edu

- **Experiment Introduction**
- The Rust Programming Language
- Foreword
- Introduction
- 1. Getting Started
 - 1.1. Installation
 - 1.2. Hello, World!
 - 1.3. Hello, Cargo!
- 2. Programming a Guessing Game
- 3. Common Programming Concepts
 - 3.1. Variables and Mutability
 - 3.2. Data Types
 - 3.3. Functions
 - 3.4. Comments
 - 3.5. Control Flow
- 4. Understanding Ownership
 - **4.1.** What is Ownership?
 - 4.2. References and Borrowing
 - 4.3. Fixing Ownership Errors
 - 4.4. The Slice Type
 - 4.5. Ownership Recap
- 5 Hsing Structs to Structure Related Data

= 🧭 ۹ The Rust Programming Language 🔒 🕫

called *lifetime parameters*. We will explain that feature later in Chapter 10.3, "Validating References with Lifetimes". For now, it's enough to know that: (1) input/output references are treated differently than references within a function body, and (2) Rust uses a different mechanism, the **F** permission, to check the safety of those references.

To see the **F** permission in another context, say you tried to return a reference to a variable on the stack like this:

```
fn return_a_string() -> &String {
    let s = String::from("Hello world");
    let s_ref = & • s;
    R
    s_ref
}
```

?

This program is unsafe because the reference &s will be invalidated when return_a_string returns. And Rust will reject this program with a similar missing lifetime specifier error. Now you can understand that error means that s_ref is missing the appropriate flow permissions.

Quiz

Question 1/3

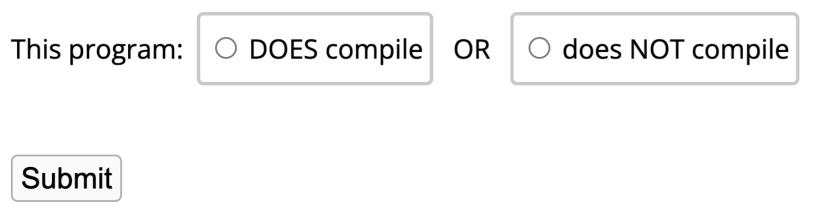
X

Question 1

Determine whether the program will pass the compiler. If it passes, write the expected output of the program if it were executed.

```
fn incr(n: &mut i32) {
1
    *n += 1;
2
  }
3
4
  fn main() {
5
  let mut n = 1;
6
 incr(&n);
7
   println!("{n}");
8
9
  }
```

Response



Question Summary

Quiz			Avg question score		Ν
	Version	Question	0.1 0.3 0.4 0.6 0.8 1.0	Confidence Interval	56 10666 21276 31885 42495 53105
ch19-01-unsafe-rust	2	3	0.07	[0.05 - 0.08]	1373
ch11-02-running-tests	3	2	0.07	[0.06 - 0.07]	4090
ch04-01-ownership-sec2-mo	8	4	0.07	[0.07 - 0.08]	8240
ch04-03-fixing-ownership-er	5	4	0.09	[0.09 - 0.10]	5777
ch17-05-design-challenge-tr	1	1	0.10	[0.08 - 0.12]	874
ch15-02-deref	2	1	0.11	[0.09 - 0.12]	1918
ch07-04-use	6	2	0.12	[0.11 - 0.13]	5403
ch16-01-threads	1	1	0.12	[0.11 - 0.13]	3182
ch06-04-inventory	4	5	0.15	[0.14 - 0.16]	7200
ch17-05-design-challenge-di	1	1	0.16	[0.13 - 0.19]	755
ch17-04-inventory	3	4	0.17	[0.15 - 0.18]	1912
ch17-05-design-challenge-re	1	3	0.17	[0.15 - 0.20]	1064

Quiz ch15-02-deref / Question 1

Question

Question 1

Determine whether the program will pass the compiler. If it passes, write the expected output of the program if it were executed. If the program does not pass, indicate the last line number involved in the compiler error.

```
1 use std::ops::Deref;
2
3 #[derive(Clone, Copy)]
  struct AccessLogger(i32);
4
5
   impl Deref for AccessLogger {
6
       type Target = i32;
7
       fn deref(&self) -> &Self::Target {
8
           println!("deref");
9
           &self.0
10
       }
11
```

Answers

N = 766	
This program does not compile.	

The last line number in the error is:

N = 548

This program **does** compile.

The output of this program will be:

0 -1

Table 1. Effects of interventions on question accuracy. *p*-values are bolded if they are under the 0.05 significance threshold. *p*-values are corrected for multiple comparisons with the Benjamini–Hochberg method [1995].

Description	Before	N	After	N	Δ	d	p
Semver dependency deduplication	0.18	593	0.70	543	0.52	1.24	<0.001
Rust lacks inheritance	0.29	234	0.74	3511	0.45	1.03	<0.001
Match expressions and ownership	0.39	522	0.74	4970	0.35	0.78	<0.001
Send vs. Sync	0.25	639	0.49	538	0.24	0.52	<0.001
String slice diagram	0.23	575	0.43	7188	0.20	0.41	<0.001
Heap allocation with strings	0.13	265	0.27	3636	0.14	0.32	<0.001
Rules of lifetime inference	0.26	177	0.40	2887	0.14	0.29	<0.001
Traits vs. templates	0.38	234	0.49	3511	0.11	0.21	0.002
Trait objects and type inference	0.09	654	0.18	544	0.09	0.27	<0.001
Refutable patterns	0.17	549	0.25	499	0.08	0.21	0.001
Declarative macros take items	0.19	340	0.23	312	0.04	0.09	0.253
Derefencing vector elements	0.15	311	0.18	4001	0.03	0.07	0.253
Grand average:				0.20	0.45		

Of all u aver

Anyone can do this!

Crichton and Krishnamurthi. "Profiling Programming Language Learning" OOPSLA '24



Crichton and Krishnamurthi. "Profiling Programming Language Learning" OOPSLA '24

Steps to improving ownership pedagogy

- 1. Collect frequent StackOverflow questions about ownership
- 2. Ask Rust learners to solve these questions
- 3. Qualitatively analyze their misconceptions
- 4. Develop new materials to address the specific misconceptions
- 5. Deploy the materials in the online textbook
- 6. Measure effect on those same questions

Anyone can do this (with enough effort)!

Crichton, Gray, and Krishnamurthi. "A Grounded Conceptual Model for Ownership Types in Rust" OOPSLA '23

Will Crichton

Hi folks, I am giving a Topos Institute talk in a few weeks about the human factors of formalized mathematics. I'm gathering some anecdata about the most common challenges faced by Lean newbies. So if you frequently answer questions in #new members, a few questions for you:

- 1. What are the most common categories of questions asked by newbies? Does it differ between mathematicians and software engineers?
- 2. Which Lean features do newbies struggle with the most early on? Which Lean features does everyone seem to struggle with no matter how long they've used Lean?
- 3. What are common misconceptions about formalized mathematics that you observe in newbie questions? What resources do you use to correct those misconceptions?

Feel free to answer any or all of these, and thank you in advance!

1:40 PM

Using Lean

```
example (p q r : Prop)
  : p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r) := by
  apply Iff.intro
  • intro h
    cases h.right with
    | inl hq =>
      show (p ∧ q) v (p ∧ r)
      exact Or.inl (h.left, hq)
     | inr hr =>
      show (p \land q) \lor (p \land r)
      exact Or.inr (h.left, hr)
  • intro h
    cases h with
    inl hpq =>
      show p r (q v r)
      exact (hpq.left, Or.inl hpq.right)
      inr hpr =>
      show p A (q V r)
      exact (hpr.left, Or.inr hpr.right)
```

▼Tactic state
1 goal
▼case mp
p q r : Prop
h : p ∧ (q v r)
xt : q v r
⊢ p ∧ q v p ∧ r

All Messages (0)

At a given point in a proof...

What facts have been locally created?

What am I trying to prove right now?

section LayoutMonotone	1 goal
<pre>theorem layoutFluidAt.monotone (dim : Fin 2) (els : List FluidEl) (p : Pos)</pre>	el' : Element
apply Rat.add_nonneg el1.el.box.size.2.prop	dim : Fin 2
exact h_valid.left	ell : FluidEl
	p : Pos
<pre>case inr h_el' =></pre>	el2 el3 : FluidEl
have h_suffix : els.IsStrictSuffix (el1 :: el2 :: els) := by	els : List FluidEl
existsi [el1, el2]	<pre>ih : ∀ (l' : List FluidEl),</pre>
<pre>constructor <;> simp</pre>	l'.IsStrictSuffix (el1 :: el2 :: el3 :: els) →
	V (p : Pos),
cases els with	valid_fluid_els l' →
nil => trivial	∀ (h_el' : el' ∈ layoutFluidAt dim l' p), Prod.nth p dim + (l'.head …).prevMargin ≤
<pre> cons el3 els =></pre>	Prod.nth el'.box.lo dim
TODO: rewrite this using layoutFormula	<pre>h_validt : valid_fluid_els (el1 :: el2 :: el3 :: els)</pre>
have := ih (el3 :: els) h_suffix	<i>h_el't</i> : el' E layoutFluidAt dim (el1 :: el2 :: el3 :: els) p
(p + el1.prevMargin.toVec dim	<pre>h_valid : valid_adjacent_fluid_els el1 el2 Λ List.Chain' valid_adjacent_fluid_els (el2 :: el3</pre>
+ el1.el.box.size.nthVec dim + el1.nextMargin.toVec dim + el2.prevMargin.toV	:: els)
+ el2.el.box.size.nthVec dim + el2.nextMargin.toVec dim)	h_el'∶el'∈
(List.Chain'.tail h_valid.right)	layoutFluidAt dim (el3 :: els)
h_el'	<pre>(p + el1.prevMargin.toVec dim + (†(Prod.nthVec el1.el.box.size dim).1, †(Prod.nthVec</pre>
apply le_trans _ this; simp	el1.el.box.size dim).2) +
	ell.nextMargin.toVec dim +
<pre>have h_el1_el2 := h_valid.left</pre>	el2.prevMargin.toVec dim +
<pre>have := List.chain'_cons.mp h_valid.right</pre>	<pre>(t(Prod.nthVec el2.el.box.size dim).1, t(Prod.nthVec el2.el.box.size dim).2) +</pre>
<pre>have h_el2_el3 := this.left</pre>	el2.nextMargin.toVec dim)
<pre>simp [valid_adjacent_fluid_els] at h_el1_el2 h_el2_el3</pre>	<pre>h_suffix : (el3 :: els).IsStrictSuffix (el1 :: el2 :: el3 :: els)</pre>
	thist: Prod.nth
TODO: try and abstract out this logic	<pre>(p + el1.prevMargin.toVec dim + (↑(Prod.nthVec el1.el.box.size dim).1, ↑(Prod.nthVec el1.el box.size dim).2)</pre>
cases dim.two_eq_or	el1.el.box.size dim).2) +
case inl h_dim =>	el1.nextMargin.toVec dim + el2.prevMargin.toVec dim +
<pre>simp [h_dim, Rat.toVec, Prod.nthVec, Prod.nth]</pre>	(↑(Prod.nthVec el2.el.box.size dim).1, ↑(Prod.nthVec el2.el.box.size dim).2) +
<pre>rw [add_assoc, add_assoc, add_assoc, add_assoc]</pre>	el2.nextMargin.toVec dim)
<pre>rw [le_add_iff_nonneg_right (p.1 + el1.prevMargin)]</pre>	dim +
apply Rat.add_nonneg el1.el.box.size.1.prop	((el3 :: els).head …).prevMargin ≤
<pre>rw [←add_assoc]; apply Rat.add_nonneg h_el1_el2</pre>	Prod.nth el'.box.lo dim
apply Rat.add_nonneg el2.el.box.size.1.prop	<pre>h_el1_el2 : 0 ≤ el1.nextMargin + el2.prevMargin</pre>
exact h_el2_el3	this : valid_adjacent_fluid_els el2 el3 κ List.Chain' valid_adjacent_fluid_els (el3 :: els)
<pre>case inr h_dim => simp [h_dim, Rat.toVec, Prod.nthVec, Prod.nth]</pre>	$h_el2_el3 : 0 \le el2.nextMargin + el3.prevMargin$
rw [add_assoc, add_assoc, add_assoc, add_assoc, add_assoc]	h_dim : dim = 0
<pre>rw [add_assoc, add_assoc, add_assoc, add_assoc, add_assoc] rw [le_add_iff_nonneg_right (p.2 + el1.prevMargin)]</pre>	⊢ p.1 + el1.prevMargin ≤
apply Rat.add_nonneg el1.el.box.size.2.prop	p.1 + el1.prevMargin + ↑el1.el.box.size.1 + el1.nextMargin + el2.prevMargin +
rw [+add_assoc]; apply Rat.add_nonneg h_el1_el2	tel2.el.box.size.1 + el2.nextMargin +
apply Rat.add_nonneg el2.el.box.size.2.prop	el3.prevMargin
exact h_el2_el3	Destert File
	► All Messages (0)

```
Prod.nth el'.box.lo dim
h_validt : valid_fluid_els (el1 :: el2 :: el3 :: els)
                                                                   Group related info
h_{el't}: el' \in layoutFluidAt dim (el1 :: el2 :: el3 :: els) p
h_valid : valid_adjacent_fluid_els el1 el2 ^ List.Chain' valid_adjacent_fluid_els (el2 :: el3
:: els)
h_el' : el' €
  layoutFluidAt dim (el3 :: els)
    (p + el1.prevMargin.toVec dim + (↑(Prod.nthVec el1.el.box.size dim).1, ↑(Prod.nthVec
el1.el.box.size dim).2) +
            el1.nextMargin.toVec dim +
          el2.prevMargin.toVec dim +
        (↑(Prod.nthVec el2.el.box.size dim).1, ↑(Prod.nthVec el2.el.box.size dim).2) +
      el2.nextMargin.toVec dim)
h_suffix : (el3 :: els).IsStrictSuffix (el1 :: el2 :: el3 :: els)
thist : Prod.nth
      (p + el1.prevMargin.toVec dim + (↑(Prod.nthVec el1.el.box.size dim).1, ↑(Prod.nthVec
el1.el.box.size dim).2) +
              el1.nextMargin.toVec dim +
            el2.prevMargin.toVec dim +
          (↑(Prod.nthVec el2.el.box.size dim).1, ↑(Prod.nthVec el2.el.box.size dim).2) +
        el2.nextMargin.toVec dim)
      dim +
                                                      Abstract repeated details
    ((el3 :: els).head …).prevMargin ≤
  Prod.nth el'.box.lo dim
h_el1_el2 : 0 ≤ el1.nextMargin + el2.prevMargin
this : valid_adjacent_fluid_els el2 el3 ∧ List.Chain' valid_adjacent_fluid_els (el3 :: els)
h_el2_el3 : 0 ≤ el2.nextMargin + el3.prevMargin
h_dim : dim = 0
⊢ p.1 + el1.prevMargin ≤
  p.1 + el1.prevMargin + ↑el1.el.box.size.1 + el1.nextMargin + el2.prevMargin +
tel2.el.box.size.1 + el2.nextMargin +
    el3.prevMargin
```


"How can I get rid of p.1 + el1.prevMargin from both sides?"

apply? timeout at `whnf`, maximum
number of heartbeats (200000)

 $\forall a b : \mathbb{Q}, a \leq a + b \rightarrow 0 \leq b$

Loogle		<pre> C ∀ (a b : Q), a ≤ a + b → 0 ≤ b abs_add' </pre>	
∀ (a b : ℚ),		theorem above $a = b^{-1}$ er-community/mathlib4 "a \leq a + b"	+ • • • 11
Result	Filter by	4 files (77 ms) in leanprover-community/mathlib4 X	
w in lea ∀(a l In Lean 4		 4 ✓ Mathlib/Algebra/Order/Sub/Defs.lean 45 177 178 protected theorem le_add_tsub (hb : AddLECancellable b) : a ≤ a + b - b 179 rw [add_comm] 0 199 200 theorem le_add_tsub' : a ≤ a + b - b := 201 theorem le_add_tsub' : a ≤ a + b - b := 201 Contravariant.AddLECancellable.le_add_tsub 	● Lean · }
statement lean import o	 Wikis Paths Mathlib/ Mathlib/Algebra/Order/ 	<pre>4</pre>	● Lean ·
lemma le begin rw add exact H end	 Mathlib/Algebra/Order/Sub Mathlib/SetTheory/Ordinal 	b/ 842 theorem le_add_left (a b : Ordinal) : a ≤ b + a := by	<pre>Lean · I).1), Id_sub_cancel).syn</pre>

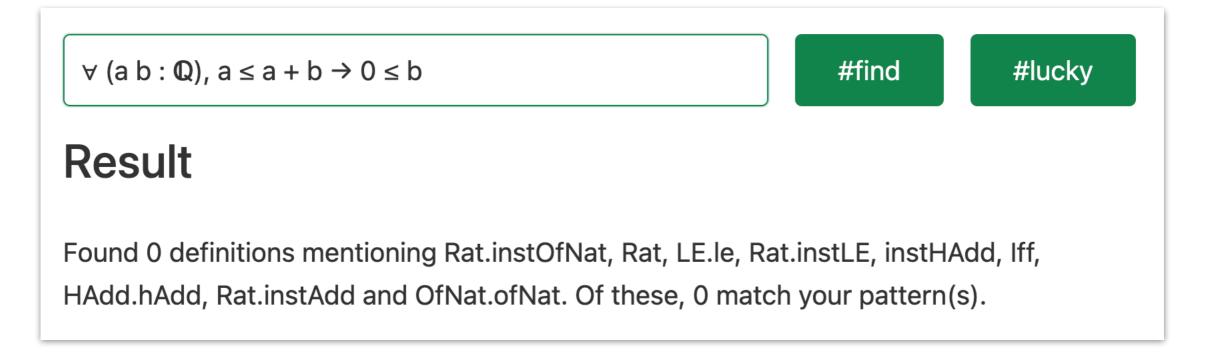
def foo {a b : ℚ} (h : a ≤ a + b) : 0 ≤ b := by exact? content content

▼ Suggestions

Try this: exact nonneg_of_le_add_right h

```
theorem nonneg_of_le_add_right

\{\alpha : Type \ u\_1\} \ [AddZeroClass \ \alpha\] \ [LE \ \alpha\] \\ [
ContravariantClass \ \alpha \ \alpha \ (fun \ (x \ x\_1 \ : \ \alpha) \ => \ x \ + \ x\_1) \\ fun \ (x \ x\_1 \ : \ \alpha) \ => \ x \ \leq \ x\_1 \\ ] \\ \{a : \ \alpha\} \ \{b \ : \ \alpha\} \ (h \ : \ a \ \leq \ a \ + \ b) \ : \\ 0 \ \leq \ b
```



$ -?a \le ?a + ?b \rightarrow 0 \le ?b$	#find	#lucky
Result		
Found 1929 definitions mentioning LE.le, HAdd.hAdd and C matches your pattern(s).	ofNat.ofNat. Of	these, one
 nonneg_of_le_add_right Mathlib.Algebra.Order.Monoid.Ur ∀ {α : Type u_1} [inst : AddZeroClass α] [inst_2 : ContravariantClass α α (fun x x_1 ⇒ x ≤ x_1] {a b : α}, a ≤ a + b → 0 	[inst_1 : L x_1 ⇒ x + >	-

How do we help people find nonneg_of_le_add_right?

Loogle, Mathlib docs: integration + training

Al tools: make them... better??

Search tactics: facilitate writing MWE

def foo {a b : ℚ} (h : a ≤ a + b) : 0 ≤ b := by
 exact?
 content

Calls to action

- Read up on psych research (the replicable kinds)
 - Cognitive psychology: memory, perception, mental models, logical reasoning
 - Educational psychology: cognitive load, skill acquisition, contrasting cases
 - Cognitive engineering: representations, user modeling, trade-offs
 - Conspicuously avoided: HCI, "intuitive" interfaces, 1-hour user studies, ...
- Build the infrastructure for evaluating human factors
 - Textbook quizzes, Zulip questions are both potential data sources
 - Validated assessments of competency (see: "Force Concept Inventory")
 - Never underestimate the power of <u>talking to people</u> and <u>watching them work</u>
 - Conspicuously avoided: IDE telemetry, user surveys
- \cdot $\,$ Improve the cognitive efficiency of devtools $\,$
 - Reduce the friction of discovery (incl. discovering the discovery tools)
 - Visualize, don't dump information (incl. docs, error messages, etc)
 - Conspicuously avoided: proof widgets, AI consultants