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Introduction

Model a flight



Flight Tracker

Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

Model evolution of the system

• Cruising speed and altitude

• Straight movement

• Radar tracks the plane

Bayesian inference

• Environment randomly influences the position

• Radar measures are noisy

• What are the conditional distributions of speed

and position given radar observations?

Goal

Study and apply semantics of probabilistic reactive programming language

Prove soundness of program transformations.
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Reactive Programming

Example



Reactive Flight Tracker

Straight movement

• Cruising altitude

• Constant speed θ

• post+1 = post + θ

Radar measures: angle and delay

radt = (αt , δt) = f (post) with

αt = atan(yt/xt)

δt = 2
√

x2
t +y2

t/c`ight
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Synchronous Flight Tracker

Block diagrams (a la Simulink or Scade)

Synchronous program (a la Lustre or Zelus)

1 node tracker(rad_obs) = (pos, dif) where
2 rec init pos = pos_init
3 and pos = last pos + theta
4 and rad = f(pos)
5 and dif = abs(rad - rad_obs)
6 node main(rad_obs) = u where
7 rec (pos, dif) = tracker(rad_obs)
8 and u = controller(pos, dif)
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Reactive Programming

Synchronous Paradigm



Synchronous Programming

Paul Caspi & al. Lustre, 1987

A language with restricted expressivity, yet strong safety and well-defined semantics

• Synchronous hypothesis

• simultaneous inputs

• instantaneous

computation

• Simply typed Γ ` e : A

• Productive Recursive Equations e where rec E
under fixpoint convergence criteria

• Causality: n-th element of the output stream depends on the

n first elements of the input stream

• Deterministic: JeK : Stream Γ→ Stream A

Example
1 node tracker(rad_obs) = (pos, dif)
2 where rec init pos = pos_init
3 and pos = last pos + theta
4 and rad = f(pos)
5 and dif = abs(rad - rad_obs)

JtrackerK (G )n = (pn, dn)

p0 = pos_init

pn = pn−1 + θ = p0 + nθ,

dn = |f (p0 + nθ)− Gn(rad_obs)|
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Topos of Trees

Birkedal & al. (. . . ) step-indexing in the topos of trees. LMCS12

Tree = [Nop,Set]

• N encodes the time steps.

• Presheaves encode the growing knowledge of the stream when time evolves

• Natural transformations encode causality: outputs depend only on previous inputs

Nop 0 1 2 . . .

Stream bool {∗} 2 2
2 · · ·

G G (0) G (1) G (2) · · ·

A A (0) A (1) A (2) · · ·

≤ ≤ ≤
π π

f=JeK f0

rG
01

f1 f2

rG
12

rA
01 rA
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The topos framework to reason on synchronous and guarded reactive languages
Guatto. A Generalized Modality for Recursion. LICS18 5



Synchronous Programming – Operational Semantics

Caspi & Pouzet, A Co-iterative Characterization of Synchronous Stream Functions, CMCS98

Labelled Transition System Γ ` e : A

States: Sta (History)

Inputs: γ ∈ Γ (Labels)

Outputs: A (Observables)

Projection: JeKobs : Sta→ A

Allocation: JeKinit : Sta

Transition: JeKstep : Sta× Γ→ Sta denoted S
γ−→ S ′

Example

1 node tracker(rad_obs) = (pos, dif)
2 where rec init pos = pos_init
3 and pos = last pos + theta
4 and rad = g(pos)
5 and dif = abs(rad - rad_obs)

JtrackerKinit = (⊥, p0,⊥)
JtrackerKstep : (p−1, p, d)

γ−→ (p, p + θ, |f (p + θ)− g)|
with g = γ(rad_obs)

JtrackerKobs (p−1, p, d) = (p, d)

Remark

Memory is bounded as only the last q steps in history are needed with q the number of last.
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Synchronous Programming – Soundness and Adequacy

Denotational semantics: Stream function associated to Γ ` e : A.

JeK : Stream Γ→ Stream A

Operational semantics: Labeled Transition System associated to Γ ` e : A.

JeKstep : JeKinit = S0 S1 S2 . . . Sn . . .

v1 v2 . . . vn

γ1 γ2

JeKobs

γ3 γn γn+1

Denote ∀n ≥ 1, JeKrunn (γ1, . . . , γn) = JeKobs
(
JeKstep (Sn−1, γn)

)
= vn

Theorem (Equivalence between denotational and operational semantics).

If all recursive equations have a unique solution for every inputs and the program is causal, then

∀G ∀n ≥ 1, JeK (G )n = JeKrunn (G≤n)
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Probabilistic Reactive

Programming

Bayesian Inference



Bayesian Reactive Flight Tracker

Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

Random environment (prior)

zt = 10km

post+1 ∼ N (post + θ, sp)

Radar: noisy measures (likelihood)

radt = f (post)

αt = atan(yt/xt) (angle)

δt = 2
√

x2
t +y2

t/clight (delay)

rad obst ∼ N (radt , sr )

At each time step, what is the (posterior) conditional distribution of the position given the

observed radar measures ? ∀n ∈ N, P(pos|rad_obs)n
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Probabilistic Synchronous Language

Baudart & al. Reactive Probabilistic Programming, PLDI20

α αobs

obsw=pdf(gaussian(α,s_r))(α    )

ProbZelus (syntax a la Zelus, Pyro or Stan)

1 proba tracker(rad_obs) = pos where
2 rec init pos = pos_init
3 (* prior *)
4 and pos = sample(gaussian(last pos+theta, s_p))
5 and rad = f(pos)
6 (* likelihood / conditionning *)
7 and () = observe(gaussian(rad, s_r), rad_obs)
8

9 node main(rad_obs) = u where
10 (* posterior *)
11 rec pos_dist = infer (tracker (rad_obs))
12 and u = controller(pos_dist)

Sequential Monte-Carlo Inference
sample: [(pos0, 1 ), . . . , (posn, 1 )]

observe: [(pos0,w0), . . . , (posn,wn)]︸ ︷︷ ︸
categorical distribution
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Probabilistic Reactive

Programming

Semantics



Probabilistic Synchronous Programming – Denotational Semantics

Stream of probabilistic measures

JΓ ` infer e : Prob AK : Stream Γ→ Stream (Prob A)

Solving recursive equations towards a schedule-agnostic semantics

• inherited from block diagrams that are standard in the industry,

• manually scheduling is not modular.

Problem to compute fixpoints in the measure semantics:

e = (x, y) where
rec x = sample(gaussian(42, 1))
and y = x

Wanted semantics:

JeK =
∫
R δ(x,x) N (42, 1)(x)dx

Yet, in the measure semantics, the least element (and least fixpoint) is the null measure.

Jones & Plotkin. A Probabilistic Powerdomain of Evaluations. 1998

Solution: externalize random seeds and compute fixpoint in the value domain

Vakar & al. A domain Theory for Statistical Probabilistic Programming. POPL2019
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Probabilistic Synchronous Programming – Denotational Semantics

Stream of probabilistic measures

JΓ ` infer e : Proba AK : Stream Γ→ Stream (Proba A)

Externalize randomness in order to solve recursive equations:

If probability distributions have density wrt the counting or the Lebesgue measures, then

ρ(U) =

∫
[0,1]

δicdf ρ(r)∈Udr

with r ∈ [0, 1] a random seed and icdf ρ(r) its inverse cumulative distribution function.

Sampling semantics: if k is the number of samples, then

⦅e⦆ : Stream Γ× Stream [0, 1]k → Stream A× Stream R+

Stochastic semantics: if (vn,wn) = ⦅e⦆ (G ,R)n, then

∀~γ, ∀n, JeK (G )n =

∫
([0,1]k )N

δvnwn dR =

∫
([0,1]k )n

δvnwn dR≤n
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Probabilistic Synchronous Programming – Operational Semantics

Sampling Labelled Transition System

States: Sta× R+

(History and score)

Inputs: γ ∈ Γ (Labels)

Outputs: A (Observables)

Projection: ⦅e⦆obs : Sta× R+ → A× R+

Allocation: ⦅e⦆init : Sta× R+

Sampling Transition: ⦅e⦆step : (S ,w)
γ,r−−→ (S ′,w ′)

with γ ∈ Γ, r ∈ [0, 1]k and w ,w ′ ∈ R+

Stochastic Labelled Transition System: if (S ′,w ′) = ⦅e⦆step (S ,w , γ, r), then

JeKstep : S ∈ Sta
γ−→

∫
[0,1]k

δS′ w ′ dr ∈ Prob Sta
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Probabilistic Synchronous Programming – Example

Syntax

1 node tracker(rad_obs) = pos
2 where rec init pos = pos_init
3 and pos = sample(gaussian(last pos + theta, s_p))
4 and rad = f(pos)
5 and () = observe(gaussian(rad, s_r), rad_obs)

Operational semantics: with states (pos_last, pos) ∈ Sta

JtrackerKobs : (p−1, p) 7→ p

JtrackerKinit : (⊥, p0), 1

JtrackerKstep : (p−1, p),w
γ,r−−→

{
S ′ = (p, p′ + θ) with p′ = icdf N (p,sp)(r) in

w ′ = w ∗N (f (p′ + θ), sr )(g) with g = γ(rad_obs)

13



Probabilistic Reactive Semantics – Soundness and Adequacy

Denotational semantics: Stream function associated to Γ ` e : Meas A

⦅e⦆ : Stream Γ→ Stream A× Stream R+

Operational semantics: Labeled Transition System associated to Γ ` e : Meas A

⦅e⦆step : ⦅e⦆init = S0, 1 S1,w1 S2,w2 . . . Sn,wn . . .

v1,w1 v2,w2 . . . vn,wn

γ1,R1 γ2,R2

⦅e⦆obs

γ3,R3 γn,Rn γn+1,Rn+1

Set ∀n ≥ 1, ⦅e⦆runn (γ1, . . . , γn,R1, . . . ,Rn) = ⦅e⦆obs (⦅e⦆step (Sn−1,wn−1, γn,Rn)) = vn,wn

Theorem (Equivalence between denotational and operational semantics)

If all recursive equations have a unique solution for every inputs and the program is causal, then

for any input stream G , and for any random seeds stream R,

∀n ≥ 1, ⦅e⦆ (G )n = ⦅e⦆runn (G≤n,R≤n)

Thus, the denotational and operational output probability measures coincide at each time step.
14



Program Equivalence

Observational Equivalence



Observational equivalence (operational)

sample(e1) + sample(e2)
obs' x + y where rec x = sample(e2) and y = sample(e1)

Definition: e1
obs' e2 if for all input stream G , Je1K (G ) = Je2K (G ).

Stochastic bisimulation: e1 ∼ e2 if there is C ⊆ Sta× Sta such that for all γ, for all s1C s2,

if s1
γ−−→

⦅e1⦆
ϕ1, then there is ϕ2 with s2

γ−−→
⦅e2⦆

ϕ2 such that

• there is a coupling C ∈ Proba (Sta× Sta) with marginals ϕ1 and ϕ2

• there is a measurable relation on pair of states C ′ ⊆ C such that

C (C ′) = 1 ∀s ′1C ′s ′2, obs⦅e1⦆(s ′1) = obs
⦅e2⦆(s

′
2)

et vice versa.

Theorem: If e1 ∼ e2, then e1
obs' e2.

Proof: consequence of adequacy.
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Observational Equivalence (Denotational)

sample(e1) + sample(e2)
obs' x + y where rec x = sample(e2) and y = sample(e1)

Sampling bisimulation: e1
sam' e2 if there is ψ : [0, 1]k1 → [0, 1]k2

• preserving uniform distribution ψ∗(λ
k1) = λk2

• ∀G ,R ∈ Stream (Γ× [0, 1]k1), ⦅e1⦆ (G ,R) = ⦅e2⦆ (G , ψ(R)) with ψ(R) = (ψ(Rn))n∈N

Theorem: If e1
sam' e2, then e1

obs' e2.

Proof: We apply the change of variable formula along ψ, set si (G ,R),wi (G ,R) = ⦅ei⦆ (G ,R)

Je1K (G ) =

∫
([0,1]k1 )N

w1(G ,R)δs1(G ,R)dλ
k1(R) =

∫
([0,1]k1 )N

w2(G , ψ(R))δs2(G ,ψ(R))dλ
k1(R)

=

∫
([0,1]k2 )N

w2(G ,R
′)δs2(G ,R′)dλ

k2(R ′)

= Je2K (G )

16



Stream Sampling Semantics

adapted from Bourke et al. Velus, 2017

Inference system (selected rules): G ,R ` e ↓ s,w

F ,G ` e ↓ s

F ,G , [] ` e ⇓ (s, 1)

F ,G ` e ↓ sµ

F ,G , [R] ` sample(e) ⇓ (icdf sµ (R), 1)

F ,G ` e ↓ w

F ,G , [] ` factor(e) ⇓ ((),w)

F ,G ,Re ` e ↓ (se ,we) F (f ) = proba f x = ef F , [x ← se ],Rf ` ef ⇓ (s,w)

F ,G , [Re : Rf ] ` f (e) ⇓ (s,w ∗ we)

F ,G + GE ,RE ` E : wE F ,G + GE ,Re ` e ⇓ (s,w)

F ,G , [Re : RE ] ` e where rec E ⇓ (s,w ∗ wE )

F ,G ,R ` e ⇓ (G(x),w)

F ,G ,R ` x = e : w

F ,G ,R ` e ⇓ (i · s,wi · w) G(x.last) = i · G(x)

F ,G ,R ` init x = e : wi · 1
F ,G ,R1 ` E1 : w1 F ,G ,R2 ` E2 : w2

F ,G , [R1 : R2] ` E1 and E2 : w1 ∗ w2

p = RV(e) [F ,G ,R ` e ⇓ (s,w) w = Π w ]R∈([0,1]ω )p

F ,G ` infer(e) ↓ integp w s

Soundness: G ,R ` e ↓ s,w if and only if (s,w) = JeK (G ,R)
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Program Equivalence – Commutativity

sample(e1) + sample(e2)
obs' x + y where rec x = sample(e2) and y = sample(e1)

G ,R1 ` sample(e1) ⇓ (s1,w1) G ,R2 ` sample(e2) ⇓ (s2,w2)

G , [R1 : R2] ` sample(e1) + sample(e2) ⇓ (s1 + s2,w1w2)

G + GE , [] ` x + y ⇓ (s2 + s1, 1)

G + GE ,R2 ` sample(e2) ⇓ (s2,w2)

G + GE ,R2 ` x = sample(e2) : w2

G + GE ,R1 ` sample(e1) ⇓ (s1,w1)

G + GE ,R1 ` y = sample(e1) : w1

G + GE , [R2 : R1] ` x = sample(e2) and y = sample(e1) : w1w2

G , [R2 : R1] ` x + y where rec x = sample(e2) and y = sample(e1) ⇓ (s2 + s1,w1w2)

where GE = [x ← s2, y ← s1].
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Program Equivalence

Application – Assumed Parameter Filter



Assumed Parameter Filter (APF) Inference

Erol & al. A nearly-black-box online algorithm for joint parameter and state estimation in temporal models, 2017

proba f(pre_x) = pre_x + theta where
rec init theta = sample(gaussian(zeros, st))
and theta = last theta

proba tracker(rad_obs) = pos where
rec init pos = pos_init
and pos = sample(gaussian(f(last pos), sp))
and rad = g(pos)
and () = observe(gaussian(rad, sr), rad_obs)

node main(rad_obs) = u where
rec pos_dist = infer (tracker (rad_obs))
and msg = controller(pos_dist)

At each time step, different methods for

• state parameters

sequential Monte-Carlo inference

• constant parameters

symbolic inference and optimization

APF necessitates a program transformation

to extract constant parameters.
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Program Transformation for APF – Soundness

proba f(pre_x) = pre_x + theta where
rec init theta = sample(gaussian(zeros, st))
and theta = last theta

proba tracker(rad_obs) = pos where
rec init pos = pos_init
and pos = sample(gaussian(f(last pos), sp))
and rad = g(pos)
and () = observe(gaussian(rad, sr), rad_obs)

node main(rad_obs) = u where
rec pos_dist = infer (tracker (rad_obs))
and msg = controller(pos_dist)

let f_prior = gaussian(zeros, st)
proba f_model(theta, pre_pos) = pre_pos + theta

let tracker_prior = f_prior

proba tracker_model(theta, rad_obs) = pos where
rec init pos = pos_init
and pos = sample(gaussian(f_prior(theta, last pos), sp))
and rad = g(pos)
and () = observe(gaussian(rad, sr), rad_obs)

node main(rad_obs) = msg where
rec pos_dist = APF.infer(tracker_model, tracker_prior, rad_obs)
and msg = controller(pos_dist)

APF Inference definition

APF.infer(f .model, f .prior, e) ∆
= infer(f .model(θ, e) where rec init θ = sample(f .prior))

Soundness: F ,G ` infer(f (e)) ↓ d iff F+,G ` APF.infer(f .model, f .prior, e) ↓ d

Proofs: By sampling bisimulation (using stream functions) or stochastic bisimulation (using

states and labeled transition systems).
20



Probabilistic Reactive Programming

Baudart, Mandel, Tasson, Density-Based Semantics for Reactive Probabilistic Programming, 2023

Equivalent Semantics for Probabilistic Reactive Programming,

with observational equivalence characterization

• Operational semantics (sLTS), with stochastic bisimulation

• Sampling semantics (stream functions), with sampling bisimulation

Proofs of Equivalence of Probabilistic Reactive Programs

• Basic equations

• Transformation of programs

G. Kahn, The Semantics of a Simple Language for Parallel Programming, 1974

Future works

• Recursive equations in Probabilistic Programming

• Probabilistic distance between inference algorithms
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