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Overview

Main topic

Applications of logic (specifically proof theory) in probability and stochastic optimization.

Structure of the talk

1 Background: A very high-level overview of applied proof theory (“proof mining”).

2 A simplemotivating example:Monotone convergent sequences.

3 Main results I:Quantitative martingale convergence.

4 Main results II: Expanding this to general stochastic algorithms.

5 The future:This work as part of a much bigger project – Proof mining in probability.

A note on syntax/detail

I will present theorems in full detail, but understanding the details is not important for this
talk! Everything can be understood on a high-level, and I will highlight the important features.
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Introduction

What is applied proof theory?

There is a famous quote due to G. Kreisel (A Survey of ProofTheory II):

“What more do we know when we know that a theorem can be proved by limited means than if
wemerely know that it is true?”

In other words, the proof of a theorem gives us muchmore information than themere truth of
that theorem.

Applied proof theory is a branch of logic that uses proof theoretic techniques to exploit this

phenomenon.
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Introduction

People do applied proof theory without realising it...

Problem. Give me an upper bound on the nth prime number pn.

1. What is pn? I know it exists because of Euclid...

2. Specifically, given p1, . . . , pn−1, I know thatN := p1 · . . . · pn−1 + 1 contains a new prime
factor q, and so pn ≤ q ≤ N.

3. In other words, the sequence {pn} satisfies

pn ≤ p1 · . . . · pn−1 + 1 ≤ (pn−1)
n−1

4. By induction, it follows that e.g. pn < 2
2
n
.

This is an extremely simple example of applied proof theory in action! From the proof that
there are infinitely many primes, we have inferred a bound on the nth prime.
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Introduction

... but it’s not always that simple

Theorem (Littlewood 1914)

The functions of integers
(a) ψ(x)− x, and
(b) π(x)− li(x)
change signs infinitely often, whereπ(x) is the number of prime≤ x,ψ(x) is the is logarithm of the l.c.m.
of numbers≤ x and li(x) =

∫ x
0
(1/ log(u))du.

The original proof is utterly nonconstructive, using among other things a case distinction on
the Riemann hypothesis. At the time, no numerical value of x for which π(x) > li(x)was
known.

In 1952, Kreisel analysed this proof and extracted recursive bounds for sign changes (On the
interpretation of non-finitist proofs, Part II):

“Concerning the bound ... note that it is to be expected from our principle, since if the conclusion
... holds when the Riemann hypothesis is true, it should also hold when the Riemann hypothesis
is nearly true: not all zeros need lie onσ = 1

2
, but only those whose imaginary part lies below a

certain bound ... and they need not lie on the lineσ = 1

2
, but near it”
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Introduction

A very boring example frommy own work

Theorem (Kirk and Sims, Bulletin of the Polish Academy of Sciences 1999)

Some general, qualitative assumptions: Suppose that C is a closed subset of a uniformly convex Banach
space and T : C → C is asymptotically nonexpansive with int(fix(T)) ̸= ∅. Fix x ∈ C.

Qualitative conclusion:The sequence {Tnx} converges to a fixed point of T.

The following is a corollary of a more general quantitative analysis of the above theorem:

Theorem (P., Journal ofMathematical Analysis and Applications 2019)

Some concrete, quantitative assumptions: Let T : C → C be a nonexpansive mapping in Lp for
2 ≤ p <∞, and suppose that Br[q] ⊂ fix(T) for some q ∈ Lp and r > 0. Suppose that x ∈ C and
∥x − q∥ < K.

Aqualitative conclusion:Define xn := Tnx. Then for any ε > 0we have

∀n ≥ f (ε)(∥Txn − xn∥ ≤ ε)

where

f (ε) :=
⌈
p · 23p+1 · Kp+2

εp · r2

⌉
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Introduction

Modern applied proof theory

Origins in the work of Kreisel and the “unwinding” of proofs. Early case studies in number

theory.

Applications in mathematics were brought to maturity by Kohlenbach and his

collaborators from late 90s onwards
1
.

There are now hundreds of papers proving new theorems that were obtained using proof

theoretic ideas andmethods, the majority published in specialised journals in the areas of

application, including nonlinear analysis, ergodic theory, convex optimization, . . . (see

the proof mining bibliography).

In parallel, there are logical metatheorems (the first in 2005
2
) that explain individual

applications as instances of general logical phenomena.

Now starting to expand and establish new connections with automated reasoning and

formal mathematics.

1
U. Kohlenbach. Applied ProofTheory: Proof Interpretations and their Use inMathematics. SpringerMonographs inMathematics.
2008

2
U. Kohlenbach. Some logical metatheorems with applications in functional analysis. Transactions of the AmericanMathematical
Society, 2005.
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Introduction

What people working in applied proof theory might do

Use logical methods to establish quantitative versions of known results in mainstream

(non-logic) mathematics.

Show that a collection of theorems are all instances of a more general, abstract theorem.

Define new classes of mappings or new types of spaces.

Develop sophisticated logical systems for reasoning about specific mathematical objects.

Study a hitherto unexplored area of mathematics to see if proof theoretic methods might

be effective and useful. This is very hard but very rewardingwhen it works.

Make important contributions to core logic, including computability theory and

theoretical computer science.

Recently: Formalise their work in a proof assistant (e.g. Lean) or consider automated

methods.

Applied proof theory is characterised by thinking about and doingmathematics froma
proof-theoretic perspective.
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Metastable monotone convergence

Monotone convergence theorem

Theorem

Let K > 0 and suppose that {xn} is a monotone sequence of reals with |xn| ≤ K for all n ∈ N. Then {xn}
converges.

Is there a computable, uniform rate of convergence for all sequences in this class? I.e. a

function ϕK(ε) such that
∀ε > 0∀i, j ≥ ϕK(ε)(|xi − xj| < ε)

Specker sequences

There exist monotone bounded sequences of rational numbers that do not possess a computable
rate of convergence.

3

Weneed to consider a different notion of quantitative convergence.

3
E. Specker. Nicht konstruktiv beweisbare Sätze der Analysis. Journal of Symbolic Logic. 1949.
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Metastable monotone convergence

A logical approach to the MCT –The statement

The following steps are entirely logic-based (i.e. have nothing to do with convergence):

MCT := ∀ε > 0∃n∀i, j ≥ n (|xi − xj| < ε)

⇐⇒ ∀ε > 0∃n∀k ∀i, j ∈ [n; n+ k] (|xi − xj| < ε)

⇐⇒ ¬¬∀ε > 0∃n ∀k∀i, j ∈ [n; n+ k] (|xi − xj| < ε)

⇐⇒ ¬∃ε > 0∀n∃k∃i, j ∈ [n; n+ k] (|xi − xj| ≥ ε)

⇐⇒ ¬∃ε > 0∃g : N → N ∀n ∃i, j ∈ [n; n+ g(n)] (|xi − xj| ≥ ε)

⇐⇒ ∀ε > 0∀g : N → N∃n∀i, j ∈ [n; n+ g(n)] (|xi − xj| < ε) := MCT∗

Theorem (Metastable monotone convergence theorem – first version)

Let K > 0 and suppose that {xn} is a monotone sequence of reals with |xn| ≤ K for all n ∈ N. Then for
any ε > 0 and g : N → N there exists some n ∈ N such that |xi − xj| < ε for all i, j ∈ [n; n+ g(n)].

Question: Can we compute n in ε and g?
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Metastable monotone convergence

A logical approach to the MCT –The proof

Suppose that {xn} ⊂ [−K,K] is monotone but not Cauchy. Then there is some ε > 0 such that

for all n ∈ N, we can find k ∈ Nwith:

∃i, j ∈ [n; n+ k] (|xi − xj| ≥ ε)

Let g : N → N be a function that finds such a k in terms of n i.e. for all n ∈ N:

∃i, j ∈ [n; g̃(n)] (|xi − xj| ≥ ε)

for g̃(x) := x + g(x).

Then iterating g̃, for all e ∈ N:

∃i, j ∈ [g̃(e)(0); g̃(e+1)(0)] (|xi − xj| ≥ ε) (∗)

In other words, in each of the intervals

[0; g̃(0)], [g̃(0); g̃(2)(0)], [g̃(2)(0); g̃(3)(0)], . . .

the sequence {xn} experiences a distinct ε-jump (or fluctuation).

But a monotone sequence in [−K,K] can experience at most 2K/ε distinct ε-fluctuations, so (∗)
must fail for some e ≤ ⌈2K/ε⌉. Contradiction!

Thomas Powell Quantitative results for stochastic processes 16 October 2024 12 / 38
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Metastable monotone convergence

A logical approach to the MCT –The payoff

Theorem (Metastable monotone convergence theorem)

Take K, ε > 0 and g : N → N. Then there exists someN ∈ N (depending only on K, ε and g) such that
for anymonotone sequence {xn} in [−K,K], there exists n ≤ N such that |xi − xj| < ε for all
i, j ∈ [n; n+ g(n)]. Moreover, we can define

NK(ε, g) := g̃(⌈2K/ε⌉)(0)

for g̃(x) := x + g(x).

Theorem (Generalised metastable convergence theorem)

Takeϕ : (0, 1) → R, ε > 0 and g : N → N. Then there exists someN ∈ N such that for any sequence
{xn} in somemetric space (X, d) that experiences atmostϕ(ε) distinct ε-fluctuations, there exists
n ≤ N such that d(xi, xj) < ε for all i, j ∈ [n; n+ g(n)]. Moreover, we can define

Nϕ(ε, g) := g̃(⌈ϕ(ε)⌉)(0)

for g̃(x) := x + g(x).
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Metastable monotone convergence

Blog post by Tao
4

4
T. Tao. Soft analysis, hard analysis, and the finite convergence principle. Essay posted 23 May 2007, appeared in Structure and
Randomness: Pages fromYear One of aMathematical Blog. 2008.
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Metastable monotone convergence

Paper by Tao
5

Later there is a footnote...

5
T. Tao. Norm convergence of multiple ergodic averages for commuting transformations. ErgodicTheory andDynamical Systems.
2008
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Metastable monotone convergence

Metastable convergence: Themain points

There are natural situations where it is impossible to provide computable rates of

convergence.

Where direct rates are not possible, one can often produce either fluctuation bounds or
metastable rates that are both computable and highly uniform.

Mathematicians outside of logic are interested in fluctuations andmetastability (a lot of

references are collected in my recent preprint
6
).

Researchers in applied proof theory have been able to:

Extract explicit fluctuation bounds
7
or metastable rates

8
in many different scenarios;

Do this in an abstract and general setting;

Use them to obtain concrete numerical information e.g. direct rates for ∥Txn − xn∥ → 0;

Explain why this is possible from a logical point of view
9
.

6
M. Neri and T.Powell. On quantitative convergence for stochastic processes: Crossings, fluctuations andmartingales.
arXiv:2406.19979. 2024.

7
J. Avigad and J. Rute. Oscillation and themean ergodic theorem for uniformly convex Banach spaces. Ergodic theory and dynamical
systems. 2014.

8
Lots of examples in the proof mining bibliography.

9
U. Kohlenbach and P. Safarik. Fluctuations, effective learnability andmetastability in analysis. Annals of Pure and Applied
Logic. 2014.

Thomas Powell Quantitative results for stochastic processes 16 October 2024 16 / 38

https://sites.google.com/view/nicholaspischke/proof-mining-bibliography/alphabetical


Metastable monotone convergence

Metastable convergence: Themain points

There are natural situations where it is impossible to provide computable rates of

convergence.

Where direct rates are not possible, one can often produce either fluctuation bounds or
metastable rates that are both computable and highly uniform.

Mathematicians outside of logic are interested in fluctuations andmetastability (a lot of

references are collected in my recent preprint
6
).

Researchers in applied proof theory have been able to:

Extract explicit fluctuation bounds
7
or metastable rates

8
in many different scenarios;

Do this in an abstract and general setting;

Use them to obtain concrete numerical information e.g. direct rates for ∥Txn − xn∥ → 0;

Explain why this is possible from a logical point of view
9
.

6
M. Neri and T.Powell. On quantitative convergence for stochastic processes: Crossings, fluctuations andmartingales.
arXiv:2406.19979. 2024.

7
J. Avigad and J. Rute. Oscillation and themean ergodic theorem for uniformly convex Banach spaces. Ergodic theory and dynamical
systems. 2014.

8
Lots of examples in the proof mining bibliography.

9
U. Kohlenbach and P. Safarik. Fluctuations, effective learnability andmetastability in analysis. Annals of Pure and Applied
Logic. 2014.

Thomas Powell Quantitative results for stochastic processes 16 October 2024 16 / 38

https://sites.google.com/view/nicholaspischke/proof-mining-bibliography/alphabetical


Metastable monotone convergence

Metastable convergence: Themain points

There are natural situations where it is impossible to provide computable rates of

convergence.

Where direct rates are not possible, one can often produce either fluctuation bounds or
metastable rates that are both computable and highly uniform.

Mathematicians outside of logic are interested in fluctuations andmetastability (a lot of

references are collected in my recent preprint
6
).

Researchers in applied proof theory have been able to:

Extract explicit fluctuation bounds
7
or metastable rates

8
in many different scenarios;

Do this in an abstract and general setting;

Use them to obtain concrete numerical information e.g. direct rates for ∥Txn − xn∥ → 0;

Explain why this is possible from a logical point of view
9
.

6
M. Neri and T.Powell. On quantitative convergence for stochastic processes: Crossings, fluctuations andmartingales.
arXiv:2406.19979. 2024.

7
J. Avigad and J. Rute. Oscillation and themean ergodic theorem for uniformly convex Banach spaces. Ergodic theory and dynamical
systems. 2014.

8
Lots of examples in the proof mining bibliography.

9
U. Kohlenbach and P. Safarik. Fluctuations, effective learnability andmetastability in analysis. Annals of Pure and Applied
Logic. 2014.

Thomas Powell Quantitative results for stochastic processes 16 October 2024 16 / 38

https://sites.google.com/view/nicholaspischke/proof-mining-bibliography/alphabetical


Metastable monotone convergence

Metastable convergence: Themain points

There are natural situations where it is impossible to provide computable rates of

convergence.

Where direct rates are not possible, one can often produce either fluctuation bounds or
metastable rates that are both computable and highly uniform.

Mathematicians outside of logic are interested in fluctuations andmetastability (a lot of

references are collected in my recent preprint
6
).

Researchers in applied proof theory have been able to:

Extract explicit fluctuation bounds
7
or metastable rates

8
in many different scenarios;

Do this in an abstract and general setting;

Use them to obtain concrete numerical information e.g. direct rates for ∥Txn − xn∥ → 0;

Explain why this is possible from a logical point of view
9
.

6
M. Neri and T.Powell. On quantitative convergence for stochastic processes: Crossings, fluctuations andmartingales.
arXiv:2406.19979. 2024.

7
J. Avigad and J. Rute. Oscillation and themean ergodic theorem for uniformly convex Banach spaces. Ergodic theory and dynamical
systems. 2014.

8
Lots of examples in the proof mining bibliography.

9
U. Kohlenbach and P. Safarik. Fluctuations, effective learnability andmetastability in analysis. Annals of Pure and Applied
Logic. 2014.

Thomas Powell Quantitative results for stochastic processes 16 October 2024 16 / 38

https://sites.google.com/view/nicholaspischke/proof-mining-bibliography/alphabetical


Metastable martingale convergence

Metastable martingale convergence
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Metastable martingale convergence

Martingales

Let (Ω,F ,P) be a probability space andF0 ⊆ F1 ⊆ . . . ⊆ F be a filtration. Let {Xn} be a
sequence of real-valued random variables adapted to {Fn} (i.e. Xn isFn-measurable) such that

E[|Xn|] <∞ for all n ∈ N.
We call {Xn} amartingale if for all n ∈ N

E[Xn+1 | Fn] = Xn almost surely.

It is a submartingale ifE[Xn+1 | Fn] ≥ Xn and a supermartingale ifE[Xn+1 | Fn] ≤ Xn.

Example

Suppose that Alex repeatedly flips a biased coin, winning one euro with probability p and
losing one euro with probability 1− p each time. Let Xn be their fortune after n coin flips.

If p = 1/2 then {Xn} is a martingale.
If p > 1/2 then {Xn} is a submartingale.
If p < 1/2 then {Xn} is a supermartingale.
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Metastable martingale convergence

Martingale convergence

Sub- and supermartingales are the stochastic analogue of monotone sequences.

Theorem (Monotone convergence theorem – first weeks of a first course in analysis)

Let K > 0 and suppose that
{xn} is a monotone sequence of reals with
|xn| ≤ K for all n ∈ N.

Then {xn} converges to some real number x with |x| ≤ K.

Theorem (Doob’s L1-convergence theorem – usually part of an advanced course on probability and
measure)
Let K > 0 and suppose that

{Xn} is a sub- or supermartingale with
E[|Xn|] ≤ K for all n ∈ N.

Then {Xn} converges almost surely to some random variable X withE[|X|] ≤ K.

Note: Martingales generalise monotone sequences of reals, so we also cannot expect direct

rates of (almost sure) convergence...
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Metastable martingale convergence

A logical approach to Doob -The statement

The following steps are logic-based or use continuity properties of P:

P ({Xn} converges) = 1

⇐⇒ P

(
∞⋂
m=0

∞⋃
n=0

∞⋂
k=0

∀i, j ∈ [n; n+ k]
(
|Xi − Xj| < 2

−m)) = 1

⇐⇒ ∀m

[
P

(
∞⋃
n=0

∞⋂
k=0

∀i, j ∈ [n; n+ k]
(
|Xi − Xj| < 2

−m)) = 1

]

⇐⇒ ∀m, λ > 0∃n

[
P

(
∞⋂
k=0

∀i, j ∈ [n; n+ k]
(
|Xi − Xj| < 2

−m)) > 1− λ

]
⇐⇒ ∀ε, λ > 0∃n∀k [P (∀i, j ∈ [n; n+ k] (|Xi − Xj| < ε)) > 1− λ]

⇐⇒ ¬∃ε, λ > 0∀n∃k [P (∀i, j ∈ [n; n+ k] (|Xi − Xj| < ε)) ≤ 1− λ]

⇐⇒ ¬∃ε, λ > 0∃g : N → N ∀n [P (∀i, j ∈ [n; n+ g(n)] (|Xi − Xj| < ε)) ≤ 1− λ]

⇐⇒ ∀ε, λ > 0∀g : N → N ∃n [P (∀i, j ∈ [n; n+ g(n)] (|Xi − Xj| < ε)) > 1− λ]
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Metastable martingale convergence

The goal

By analysing the proof of Doob’s theorem can we prove the following?

Theorem (Metastable martingale convergence theorem)

Take K, ε, λ > 0 and g : N → N. Then there exists someN ∈ N (depending only on K, ε, λ and g) such
that for any sub- or supermartingale {Xn}with

sup
n∈N

E[|Xn|] < K

there exists n ≤ N such that

|Xi − Xj| < ε for all i, j ∈ [n; n+ g(n)]

with probability> 1− λ. Moreover, we can define

NK(λ, ε, g) := . . .
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Metastable martingale convergence

Maybe there is also a connection with fluctuations?

For ε > 0 define the random variable Jε(Xn) to be the maximum number of ε-fluctuations
experienced by the sequence {Xn}.

Theorem (Neri-P.
10
)

For anyϕ : (0, 1) → R, ε > 0 and g : N → N there exists N ∈ N such that for any sequence of random
variables {Xn}with

E [Jε(Xn)] < ϕ(ε)

there exists n ≤ N such that

|Xi − Xj| < ε for all i, j ∈ [n; n+ g(n)]

with probability> 1− λ. Moreover, we can define

NK(λ, ε, g) := g̃(⌈ϕ(ε)/λ⌉)(0)

for g̃(x) := x + g(x).

M. Neri and T.Powell. On quantitative convergence for stochastic processes: Crossings, fluctuations andmartingales.
arXiv:2406.19979. 2024.
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Metastable martingale convergence

Proof of the theorem (in case there is time!)

Suppose for contradiction that for all n ∈ N:

P (∃i, j ∈ [n; n+ g(n)](|Xi − Xj| ≥ ε)) ≥ λ (∗)

so in particular, for all e ∈ N:

P (Ae) ≥ λ for Ae := ∃i, j ∈ [g̃(e)(0); g̃(e+1)(0)](|Xi − Xj| ≥ ε)

For any k ∈ Nwe have

(k+ 1)λ ≤
k∑

e=0

P(Ae) =
k∑

e=0

E (IAe) = E

[
k∑

e=0

IAe

]
≤ E [Jε(Xn)] < ϕ(ε)

which is a contradiction for

k :=
⌈ϕ(ε)
λ

⌉
Therefore P(Ae) < λ for some e ≤ k and therefore (∗) fails for some

n ≤ g̃(k)(0)

Thomas Powell Quantitative results for stochastic processes 16 October 2024 23 / 38



Metastable martingale convergence

Proof of the theorem (in case there is time!)

Suppose for contradiction that for all n ∈ N:

P (∃i, j ∈ [n; n+ g(n)](|Xi − Xj| ≥ ε)) ≥ λ (∗)

so in particular, for all e ∈ N:

P (Ae) ≥ λ for Ae := ∃i, j ∈ [g̃(e)(0); g̃(e+1)(0)](|Xi − Xj| ≥ ε)

For any k ∈ Nwe have

(k+ 1)λ ≤
k∑

e=0

P(Ae) =
k∑

e=0

E (IAe) = E

[
k∑

e=0

IAe

]
≤ E [Jε(Xn)] < ϕ(ε)

which is a contradiction for

k :=
⌈ϕ(ε)
λ

⌉
Therefore P(Ae) < λ for some e ≤ k and therefore (∗) fails for some

n ≤ g̃(k)(0)

Thomas Powell Quantitative results for stochastic processes 16 October 2024 23 / 38



Metastable martingale convergence

Proof of the theorem (in case there is time!)

Suppose for contradiction that for all n ∈ N:

P (∃i, j ∈ [n; n+ g(n)](|Xi − Xj| ≥ ε)) ≥ λ (∗)

so in particular, for all e ∈ N:

P (Ae) ≥ λ for Ae := ∃i, j ∈ [g̃(e)(0); g̃(e+1)(0)](|Xi − Xj| ≥ ε)

For any k ∈ Nwe have

(k+ 1)λ ≤
k∑

e=0

P(Ae) =
k∑

e=0

E (IAe) = E

[
k∑

e=0

IAe

]
≤ E [Jε(Xn)] < ϕ(ε)

which is a contradiction for

k :=
⌈ϕ(ε)
λ

⌉
Therefore P(Ae) < λ for some e ≤ k and therefore (∗) fails for some

n ≤ g̃(k)(0)

Thomas Powell Quantitative results for stochastic processes 16 October 2024 23 / 38



Metastable martingale convergence

Proof of the theorem (in case there is time!)

Suppose for contradiction that for all n ∈ N:

P (∃i, j ∈ [n; n+ g(n)](|Xi − Xj| ≥ ε)) ≥ λ (∗)

so in particular, for all e ∈ N:

P (Ae) ≥ λ for Ae := ∃i, j ∈ [g̃(e)(0); g̃(e+1)(0)](|Xi − Xj| ≥ ε)

For any k ∈ Nwe have

(k+ 1)λ ≤
k∑

e=0

P(Ae) =
k∑

e=0

E (IAe) = E

[
k∑

e=0

IAe

]
≤ E [Jε(Xn)] < ϕ(ε)

which is a contradiction for

k :=
⌈ϕ(ε)
λ

⌉
Therefore P(Ae) < λ for some e ≤ k and therefore (∗) fails for some

n ≤ g̃(k)(0)

Thomas Powell Quantitative results for stochastic processes 16 October 2024 23 / 38



Metastable martingale convergence

Proof of the theorem (in case there is time!)

Suppose for contradiction that for all n ∈ N:

P (∃i, j ∈ [n; n+ g(n)](|Xi − Xj| ≥ ε)) ≥ λ (∗)

so in particular, for all e ∈ N:

P (Ae) ≥ λ for Ae := ∃i, j ∈ [g̃(e)(0); g̃(e+1)(0)](|Xi − Xj| ≥ ε)

For any k ∈ Nwe have

(k+ 1)λ ≤
k∑

e=0

P(Ae) =
k∑

e=0

E (IAe) = E

[
k∑

e=0

IAe

]
≤ E [Jε(Xn)] < ϕ(ε)

which is a contradiction for

k :=
⌈ϕ(ε)
λ

⌉
Therefore P(Ae) < λ for some e ≤ k and therefore (∗) fails for some

n ≤ g̃(k)(0)

Thomas Powell Quantitative results for stochastic processes 16 October 2024 23 / 38



Metastable martingale convergence

Now it should be easy?

We need a function ϕK(ε) such that for any sub- or supermartingale {Xn}with

sup
n∈N

E[|Xn|] < K

we have

E[Jε(Xn)] < ϕ(ε)

Theorem (Chashka
11
)

For any K > 0 there exists amartingale {Xn}with

sup
n∈N

E[|Xn|] < K

such that
E
[√

Jε(Xn)
]
= ∞

It turns out you only really get nice fluctuation behaviour for L2-martingales.

11
Appears asTheorem 34 of A. G. Kachorovskii.The rate of convergence in ergodic theorems. RussianMathematical Surveys. 1996.
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Metastable martingale convergence

For martingales, crossings are far easier to characterise

For a < b define the random variable UN,[a,b](Xn) to be the maximum number of times {Xn}
upcrosses the interval [a, b] up to timeN.

Lemma (Doob’s upcrossing inequality for supermartingales)

E
[
U∞,[a,b](Xn)

]
≤ |a|+ E(|X0|)

b− a
The inequality encodes the following intuitive idea: Imagine that {Xn} represents a stock, and consider
an investment strategy that buys the stock whenever its price falls below a, and sells it whenever its price
rises above b. Let YN denote your winnings after time N.

YN is at least as good as the number of upcrossings× (b− a).
Because {Xn} is a supermartingale (i.e. the stock value decreases on average), this strategy can’t win
on average:E[YN] ≤ 0.

Convergence from the upcrossing inequality (very roughly)

If {Xn(ω)} doesn’t converge to a limit in [−∞,∞], then there exists a < b such that
U∞,[a,b](Xn(ω)) = ∞, but by the upcrossing inequality P

(
∃a < b [U∞,[a,b](Xn) = ∞]

)
= 0.
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Metastable martingale convergence

Metastability for L1-bounded crossings C[a,b](Xn) (= down + upcrossings)

Theorem (Neri-P.
12
)

For anyλ, ε, L,M > 0 and g : N → N there exists N ∈ N such that for any sequence of random
variables {Xn} such that

P (|Xn| ≥ M) <
λ

2

and E
[
C[a,b](Xn)

]
< L for [a, b] ∈ P(r, l)

whereP(r, l) denotes the partition of [−r, r] into l equal subintervals and

r := M
(
1+

2

p

)
and l := p+ 2 and p :=

⌈
8M
ε

⌉
there exists n ≤ N such that

|Xi − Xj| < ε for all i, j ∈ [n; n+ g(n)]

with probability> 1− λ. Moreover, we can define

NL,M(λ, ε, g) := g̃(e)(0) for e :=
2(p+ 2)L

λ

M. Neri and T.Powell. On quantitative convergence for stochastic processes: Crossings, fluctuations andmartingales.
arXiv:2406.19979. 2024.
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Metastable martingale convergence

Ametastable martingale convergence theorem

The following is then a simple corollary:

Theorem (Neri-P.
13
)

Take K, ε, λ > 0 and g : N → N. Then there exists someN ∈ N (depending only on K, ε, λ and g) such
that for any sub- or supermartingale {Xn}with

sup
n∈N

E[|Xn|] < K

there exists n ≤ N such that

|Xi − Xj| < ε for all i, j ∈ [n; n+ g(n)]

with probability> 1− λ. Moreover, we can define

NK(λ, ε, g) := g̃(e)(0) for e := c
(
K
λε

)
2

where c > 0 is a suitable constant that can be defined explicitly.

M. Neri and T.Powell. On quantitative convergence for stochastic processes: Crossings, fluctuations andmartingales.
arXiv:2406.19979. 2024.
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Metastable martingale convergence

We can use our general framework to do a lot more

Some of our results onmartingales:

stochastic process {Xn} iterations of g̃
constant, monotone K/ε
almost sure monotone cK/λε

L2-martingales cK2/λε2

L1-martingales cK2/λ2ε2

L1-almost-martingales cK2/λ2(1+r)ε2 some r ≥ 0

Notes:

Most of these rates are optimal in a certain sense, but achieving optimal rates and

showing that they are optimal was not easy.

Similar rates can be obtained in other situations where crossing bounds are present e.g.

ergodic theory, and we can potentially apply our work to other domains in which crossing

inequalities feature
14
.

14
M.Hochman. Upcrossing inequalities for stationery sequences and applications. Annals of Probability. 2009.
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Almost martingales in stochastic optimization

Almost martingales in stochastic optimization
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Almost martingales in stochastic optimization

What are “almost supermartingales”?

Theorem (Supermartingale convergence: A simple corollary of Doob’s theorem)

Let {Xn} be a nonnegative supermartingale i.e.

E[Xn+1 | Fn] ≤ Xn almost surely.

Then {Xn} converges almost surely.

Theorem (Robbins-Siegmund
15
, an almost-supermartingale convergence theorem)

Let {Xn}, {An}, {Bn} and {Cn} be sequences of nonnegative integrable random variables adapted to the
filtrationFn satisfying

E[Xn+1 | Fn] ≤ (1+ An)Xn − Bn + Cn almost surely

where
∑∞

i=0
Ai,
∑∞

i=0
Ci <∞ almost surely. Then, almost surely, {Xn} converges and

∑∞
i=0

Bi <∞.

This is one of themost important theorems in stochastic optimization!

15
Robbins and Siegmund. A convergence theorem for non negative almost supermartingales and some applications. Optimizing
methods in statistics. 1971.
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Almost martingales in stochastic optimization

Using the Robbins-Siegmund theorem: A roughly sketched example

Let θ be the unique root of some functionM. The Robbins-Monro scheme one of the best

known stochastic approximation algorithms, defined by:

xn+1 = xn − anyn and yn = M(xn) + εn

for {εn} some random errors and {an} some step sizes satisfying
∑
a2n <∞ and

∑
an = ∞.

Sketch proof that xn → θ a.s.
ForFn := σ(x0, y0, . . . , xn, yn), setting Xn := (xn − θ)2 and Vn := 2M(xn+1)(xn+1 − θ)we can
show

16
that

E[Xn+1 | Fn] ≤ (1− 2a2n+1
c2)Xn − 2an+1Vn + a2n+1

(c2 + K)

where |M(x)| ≤ c(|x − θ|+ 1) andE[ε2n+1
| Fn] ≤ K.

In other words, {(xn − θ)2} is an almost-supermartingale.

1 By Robbins-Siegmund, |xn − θ| converges and
∑
anM(xn)(xn − θ) <∞ a.s.

2 Since

∑
an = ∞, under suitable conditions onMwe can show that |xn − θ| → 0.

16
For details: T. L. Lai. Stochastic approximation. Annals of Statistics. 2003.
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Almost martingales in stochastic optimization

A quantitative Robbins-Siegmund theorem

Theorem (Neri and P.
17
)

Let {Xn}, {An}, {Bn} and {Cn} be nonnegative integrable stochastic processes adapted to some filtration
Fn such that

E[Xn+1 | Fn] ≤ (1+ An)Xn − Bn + Cn

almost surely for all n ∈ N. Suppose that K > E[X0] and that ρ, τ : (0, 1) → [1,∞) satisfy

P

(
∞∏
i=0

(1+ An) ≥ ρ(λ)

)
< λ and P

(
∞∑
i=0

Cn ≥ σ(λ)

)
< λ

for allλ ∈ (0, 1). Then for any ε, λ > 0 and g : N → N there exists some

n ≤ g̃(e)(0) for e := c

(
ρ
(
λ
8

)
·
(
K + σ

(
λ
16

))
λε

)
2

and g̃(j) := j+ g(j)

such that
|Xi − Xj| < ε for all i, j ∈ [n; n+ g(n)]

with probability> 1− λ. (Wehave an analogous result for
∑
Bn <∞).

17
Neri and Powell. A quantitative Robbins-Siegmund theorem. Preprint. 2024.
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Almost martingales in stochastic optimization

Questions

Can we use our abstract, quantitative Robbins-Siegmund theorem, and/or other approaches in

this spirit, to obtain useful numerical information for (classes of) stochastic approximation
algorithms?

Are there interesting applications in e.g. machine learning?

This is the sort of thing that I andmy collaborators are currently working on.

(The answer to both questions is YES!)
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The future: Proof mining in probability

The future: Proof mining in probability theory
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The future: Proof mining in probability

Proof mining in probability: Collaborators

Ben Langton Keji Neri Pedro Pinto

(Bath) (Bath) (Darmstadt)

Nicholas Pischke Me! AlexWan

(Darmstadt) (Bath)
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The future: Proof mining in probability

Why is proof mining in probability interesting and rewarding?

Important theorems are often very simple to state, but have deep and interesting proofs.

Numerical information (e.g. convergence rates, bounds on constants etc.) can be relevant

and sought after by probability theorists (e.g. Berry-Esseen theorem).

There are many variations of key proof tactics in different settings (e.g. “reduce to Doob’s
martingale convergence theorem”):

New quantitative information related to those tactics is then broadly relevant, and

proof theoretic insights could also lead to generalisations and unification.

Probability theory, particulary stochastic convergence, underlies several very active

research areas, including stochastic optimization andmachine learning.

Numerical information is typically highly uniform, and there is an exciting prospect of new
logical metatheorems that explain this (in fact this is already underway

18
).

Probability is an extremely beautiful area of mathematics, and it’s nice to have an excuse

to study it...

18
Neri and Pischke. Proof mining and probability theory. arXiv:2403.00659 2024.
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The future: Proof mining in probability

Progress so far

Covered in this talk:

A broad understanding of martingales (and related things) from a computational

perspective
19
.

A quantitative Robbins-Siegmund theorem, plus a toolkit for obtaining metastable rates

for general almost-supermartingales
20
.

Recent work by collaborators:

A beautiful “proof-theoretically tame” logical system for probability, and a metatheorem

that guarantees the extractability of numerical information that is independent of the
underlying probability space

21
.

New convergence rates for strong laws of large numbers
22
.

19
M. Neri and T.Powell. On quantitative convergence for stochastic processes: Crossings, fluctuations andmartingales.
arXiv:2406.19979 2024.

20
Neri and Powell. A quantitative Robbins-Siegmund theorem. Preprint. 2024.

21
Neri and Pischke. Proof mining and probability theory. arXiv:2403.00659 2024.

22
Neri. Quantitative strong laws of large numbers. arXiv:2406.19166 2024.
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The future: Proof mining in probability

Ongoing and future work

1 The quantitative study of stochastic algorithms, with applications in stochastic

optimization andmachine learning.

2 Abstract convergence proofs for generalised classes of algorithms in these areas.

3 Expanding existing logic systems to include an abstract, logical treatment of random

variables and notions of integrability.

4 Using convergence results on almost-supermartingales as the basis for a major effort to

build a library of computer formalised proofs for stochastic optimization
23
.

5 The development of algorithms for automating the reduction to a supermartingale i.e.

automatically generating convergence proofs.

andmuchmore ...

Thank you!

23
For some speculative ideas on the formalisation of applied proof theory in general see A. Koutsoukou-Argyraki. On
preserving the computational content of mathematical proofs: Toy examples for a formalising strategy. Proceedings of CiE. 2021.
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