Compact Proofs

Measuring Quality of Understanding with a
Compression-Based Metric

Topos Institute, October 24, 2024

Lawrence Chan Louis Jaburi Ronak Mehta

Thomas Kwa Chun Hei Yip Euan Ong Soufiane Nourbir Alex Gibson

Why care about mech interp?

e Understanding models
e Model evaluation and control
e Guarantees

e Model distillation

Why care about metrics on mech interp?

e Optimization: If we can measure it, we can optimize for it

e Automation: Suppose we got AGI tomorrow, can we build a trustworthy,
automated pipeline for discovering mechanistic explanation of model
behavior?

e Guarantees: Maybe mech interp can help us generate explanations with the
highest standard of trustworthiness: formal proofs

Formalizing proof length to quantify compression

[Behavioral claim } [True behavior of the }

model

N /
Y

theorem statement

Proof = sound computation of worst-case error (divergence in behavior)

Length of proof = cost of running computation E
GZIP

https://www.svgrepo.com/sva/29028/gzip-file-format-variant https://calebstanford.com/2019/01/15/coq-vector-image/

https://www.svgrepo.com/svg/29028/gzip-file-format-variant
https://calebstanford.com/2019/01/15/coq-vector-image/

Formalizing proof length to quantify compression

[Behavioral claim } [True behavior of the }

model

5 Y (2,y)~D Sy, M(z))] > b)
N

theorem statement

Proof = sound computation of worst-case error (divergence in behavior)

Length of proof = cost of running computation E
GZIP

https://www.svgrepo.com/sva/29028/gzip-file-format-variant https://calebstanford.com/2019/01/15/coq-vector-image/

https://www.svgrepo.com/svg/29028/gzip-file-format-variant
https://calebstanford.com/2019/01/15/coq-vector-image/

Quantifying the compute-cost of explanations

A Brute Force Proof
TrueAccuracy T
Accuracy
Lower Bound
Trivial Proof -
7 ~Linear scaling of
¥ baseline cost

FLOPs to Verify Proof

Does understanding improve upon the linear baseline?

A
True Accuracy . ________
Hypothesis: Understanding of
Accuracy structure can help recover
Lower Bound bound tightness

FLOPs to Verify Proof

Proofs with varying mechanistic understanding

Logits

True Model

(%o, 21,...,463)

p

S

. [y

A 3 £y A)

Input

ts 4 B s

FLOPs Required:

Accuracy Lower Bound:
Unexplained Dimension:
Asymptotic Complexity:

Brute Force Proof

(%o, 21, ...,463)

to ti ta i3

1.41 x 1014
99.92 %
1.07 x 10°

(D(dvocabnctx)

Cubic Proof

(0,21, ...,463)

p

4
I

N

3.52 x 107
95.31%
1.28 x 104

(D(dvocab3 & nctx)

Subcubic Proofs

(eo,el,...,le;;) 75l

QK Circuit decomposes
into large “size” and small
“noise” components

Size component w/
singular value 7.4 x 103

Other components have
singular value < 1.5 x 10!

4.68 x 10°
40.59 %
4.42 x 103

2
O(dvocab ® dmodel * nctx)

We found an empirical “pareto frontier”

Pareto frontier from
incorporating mechanistic
understanding

1.0 \A. ... Wit Bias (ELCC: 0.9992 —+ 00015)

0.8 e cubic (rel acc: 0.9853 £ 0.0038)

I subcubic (rel acc: 0.833 4+ 0.011)

0.6 attention—dvocab(],,m-,de]2 (rel acc: 0.807 + 0.013)
" direct-quadratic (rel acc: 0.663 + 0.060)

Normalized Accuracy Bound

0.4 : attention—dvocabdm0d912, direct-quadratic (rel acc: 0.637 £+ 0.060)
02 & .
0.0 : " Baseline approach in log scale
22/1 229 23/1 239
FLOPs to Verify Proof (approximate) Puzzle: Why does more structure not

always mean better bound?
10

Compounding errors from lack of structure

Approximation Strategy

(exact) max row diff
2 - (max abs value)
max row diff on subproduct

recursive max row diff

Result

1.8

2.0

5.7

97

Complexity

O

2
dvocab dmodel

2
O dvocab dmodel

N— N N N

(O()
(O()
(O(dyocandmoder”)
(O(dvocabdmoder)

1

Applying Compact Proofs

1.25

- Compressing MLPs (integration) wo 03
1 ¢§ 1
- Ground truth for comparing mech interp approaches (groups)
[] o o HZJ.
+ @ + o o=@ O
) . [m)O (0]
- Optimization targets for representation search (SAEs) A oo L
8 mmene, . (1321; * s Q asm” : “ e
= 12

Some images from https://transformer-circuits.pub/2023/monosemantic-features

https://transformer-circuits.pub/2023/monosemantic-features

Open Problems for Scaling Compact Proofs

Fix noise
- Fine-tuning; or heuristic arguments; or sampling
- Suppress exponential in # layers
- Toy model: induction heads
- Autoformalize proofs
- AlphaProof
- Autointerp
- Step 2: 7?7
- Step 3: Profit

13

Images by GPT-40 https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

Questions?

Extra Content

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAEs

Proof length

Theorem:E, ,y.p [f(y, M(z))] > b
Our proofs consist of two components:

1. Proof that a particular computation C, when run with any model’'s weights,
produces a valid bound on that model’s performance
2. Atrace of running C proving that C(M) =b

In practice, proof length will be dominated by (2)

16

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAEs

Case study: Max of K

Transformer
Model for Max of K —
K=4 /
l = i a’t‘tn-only
—J 1 attn head
no laye_mom —_——
d_vocab = 64
@ | dhead = 32
J,_.mode_l = 32 \
n_ctx =49 X >
one-hot encod?ng
N Y

loss = P(t/ = moaxkx0,x1,x2,x3))
17

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAEs

Brute Force Proof Sketch

Theorem: E [arg max(M(z)[—1]) = maxz;| > .9973

Computation C:

def C(M):
count = ©
for x in possible sequences:
count+=(M(x)[..., -1, :].argmax(dim=-1) == x.max(dim=-1).values).sum().item()

return count / len(possible sequences)

1. Lemma: C produces a valid bound.
Proof. Exercise
2. Lemma: C(M)=.9973

Proof: By computation.
18

Attend More to Bigger Tokens & Copy

Logits (ZO ’ ll) ree 163)

4 [Unembed J

QK Circuit attends 5 s
to larger tokens more”

~

OV Circuit performs, 4
low-rank copying

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAEs

N
* Direct path

“does nothing”

19

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAEs

Results: Proof Size vs. Tightness of Bound

Description Complexity Cost Bound
of Proof
Brute force O(v* 1 kd) 0.9992 £ 0.0015
Cubic O(v3k?) 0.9531 4 0.0087
Sub-cubic Ow? - k* +v*-d) 0.820 £ 0.013

w/o mean+diff 0.488 + 0.079
Low-rank QK OW?k? + vd® + @) 0.795 + 0.014

SVD only QK EU&OV 0.406 £ 0.077
Low-rank EU OW*k* + vd + @) 0.653 % 0.060

SVD only EU QK&OV (3.384:0.06) x 10~°
Low-rank QK&EU O(v?k? + @ +d + @) 0.627 =+ 0.060

SVD only QK EU oV (3.3840.06)x 10~°
Quadratic QK OW?k? + vd + @) 0.390 + 0.032

QK EU&OV
. 2

Quadratic QK&EU O(v2k? + 2+ w) 0.285 4 0.036

QK&EU oV 20

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAEs

Red-Teaming Cubic Proof

Insight: There is a single token we want to be paying attention to (the max)
Convexity of Softmax:

(max token, non-max token)
= score of (how bad it is to pay attention to,
how much attention is paid to it for each fixed query token)

(max token, query token) -
= sort non-max tokens by a combined score

20

If model succeeds when all non-max non-query tokens are A, ;
it also succeeds when tokens are better than A.

=)
<

60

—200

Modulo handling positional encodings, this allows us to run o0 om w Bow om

the model on only d_vocab® sequences instead of d_vocab*. y

— Overview

: Proofs Approach

: = Case Study: Max of 4

Applications: Modular Arithmetic and SAEs

O
-
<
@
a
r—fm

<
>
-

=
o
PR
O
-y
¥
O
Q
@

@torch.no_grad()
def conpute extreme softnaxed_right attention cubic simple(
EQKE: Flont[Tenzor, "d. vocab, # roga: F122 w 5
v g

EQP: Float|Tenzor,
sttn scales UnionFlo

"RSaer otocksl # noaa £722 =

attn aten scate,
] “ i Optional[int] = None,
[

attn=3 d_vocab_q d_vocab_nax d_vocab_nonmax n_ctx_coples_nonmax”, ¥ noga: F722

ax 15 minmaxe1) post-softmax attention (extremized over sequence orderings) paid to the maxiun token (attn=8) and

)

Computes the extrene (atn-to-m
(he nun maxinun token” (1t
each poSSiblc vaite o the duery £
et ocsivte value of the nax (uken‘
© ¥or cach possible value of the nonmax
T Ton GoCh Punber oF Copies of tne-no max token o 5

nd o (ne query Token (ate

Basically, this attenpts to louer bound the attention that is paid to the max token and the query token, by

pessinisirg over the brder of the non-query tokens e
Note that we could do a bit of a better job than this by taking in min_gap and a pre-computed extreme_attention

natrix, if we wanted to

Tine Conplexity: 0(d_vocab3 * n_ctx"2)

Precongicons

Sate nodel (\sart(d_head) by default)
quuw”mmmwﬂmwwqmwnmk
EQ(Gla, p] 5 the attention paid from position p -

Postiondiions
S in (0,1,2), 0, K, coptes nammax: e for uhicn) e
et i g L ontes o
nswer 1s-indérned’ 1F-Ehe query okdn 15 greater than the max token, or 1f the non-max
oken 12"greacer”Shan tne nax coken
A copies nannax !+ : retural:, u ax) . -
Tt 1e,"Ehe anshe 13 undeFined 1 (he non“hatoken 55 cquel Lo Lhe nox token and thre are ron-zero - .

o return(:, w, g, m, k, n_copies nommax] =
(That 157 TR ancuar 15 undsfined 47 the' auery token S5 notéayal vo.ife ek foken and there are n_ctx
)

With query g, n_copies_nonmax coples

retutalB, 8, a, m k, n copiesr to max to return[1, 8, a, ® k, n_copies nonsax
returnfel 1) G 1. k) nconles nnnmax naxd w© non max token K <= return[1] 1, g, m, k. n_copies_nonmax
return(e; 2, @, m k. n-co n paid to n'a < retumn(1, 2, 4, k. n-copiesnonmax

dtocab, n_ct - EE shapel 1], EQKshapel -1

05((2, d_vocab, n_ctx)). to(EQKE) + Flost(
zeros(
etx,
). to(EgkE)

& constants for indices so we don’t have @ and 1 Floating around
wmax =0

back, S0 we can put the max token at the front.

e sart £gee s0 $p2¢ higher-ateention postcions ave
EQP, EQUPML = EQUP[:, :-1].sort(dim=-1)"values, EQKP[
for max_tok in tadn(range(d vocab), des:
Forg tox in tonse(na Tok +
fooll, a1 Rl ek, aton) - eacpenla ton)
ook 10 rwwr”(max ok v
<o

osition)

max_tok”, positior

=SSk, 50 we pay 109 sttention to s
T Cmax, “a_tol max.tok

o, dtok, macciok, kotoks o
r(sul![} Wary, q_tok, max_tok, k_tok. o]

nol, 1] = Eakela tok] + EQLE[q_tok, K tok]
tnp_sh = (tmp / attn
rzsul![(e, Tk, mex.tok. k-sok, 01 = tap_sal:, 5-11.sunC
res: e, q_tok, max_tok, k_tok, 0] = 0
rzsul![vy 480k mio K86 8] 2 fwpsars, 1)
for " cauks nonmax in range(n_ctx):
Copies max nonquery = N Etx - n_coples nonmax - 1
it “sax_tok and 1 coptes. onnax

faxeta_toq
2 EQKPla-tok] . F1ip(dims=[2])

(i, in_copies max_nonquery] +- EQKE[q_tok, max_tok]
intion paid to non-nax fokens other than in Ehe query position
ey ioAT S EOE i ok tok]

., kCtok, n_coptes_nonmax] = tap_snl

y
x_tol
ik, tok i tok. n (DD):S nonmax] Y resutet
ia

- Ghmctnls, S
return result

22

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAEs

Red-Teaming Sub-cubic Proof

Insight: QK attention dominates OV

e “badness” ordering of tokens is largely independent of max token

e we can do a (slow) proof search procedure to determine “gap size” (max -
largest non-max)

e for each query & max, we can use gap to bound how much attention we pay
to non-max tokens -

e we then must independently pick which token is worst to pi _
attention to (combined score is too expensive to compute
exactly)

=3
&<

60

—200

0 10 20 30 40 50 60
key token

23

Red-Teaming 4 vocab?d model = d vocab d model?

Attention Score (EQKE)

query token

Query-Side SVD

10
20

30

SVD

Query Token

40

50

60 |
- T T T T

0 10 20 30 40
Singular Index

10

50

20

60

200
100
0
—100
—200
30 40 50 60
key token
Singular Values
7000 ?
6000 |
5000 -
2 4000
s
3000 -|
2000 -
1000 -
0 *h

0 10 20 30 40 50 60
Singular Index

Key Token

10

20

30

40

50

60

Overview
Proofs Approach
Case Study: Max of 4

Key-Side SVD

T T T T T T

10 20 30 40 50 60
Singular Index

Applications: Modular Arithmetic and SAEs

24

Overview
Proofs Approach
Case Study: Max of 4

Wh at we can con trl b u te to S OTA Applications: Modular Arithmetic and SAE

e Manual mech interp: where should we spend our research budget?
e SAEs: how do we reduce the dependence on human judgment?
e GPT explains GPT: we're hoping to use LLMs to formalize proofs

e (Causal Scrubbing: we add rigor and a compression metric

Select a neuron: | Marvel comics vibes

i o
Layer 0 neuron 816: language related to Marvel comics, movies, and characters, as well as other
superhero-themed content

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAE

Modular Arithmetic Interpretability

Step 1: Embed token a and b to a circle where w, = 2zk/p for some k € [1.2:+-,p — 1]
a—>E,=E,,, Ea_y) = (cos(wza).sin(wya)).b — E, = (E, . E,,'_v) = (cos(wyb). sin(w;b))

E.E, e)
5é Clock Algorithm Pizza Algorithm
MLP or E, Step 2: compute the angle sum using multiplication. Step 2.1: compute the vector mean.
Transformer | y . Eur\ (FaBo—ElEs,\ (costwa+b) E,, = (E, + E,)/2 = (cos(wya) + cos(w;b), sin(wya) + sin(w; b))/2
‘T (E“"*‘) B <E“E”--V A7 Eﬂ-.‘Eb~'> - <Si"(w*(“ s b))> Step 2.2: using E,;, and nonlinearities to compute H,,

Unembed -U, H, B, H,, = |cos(w,(a — b)/2) | (cos(w,(a + b)), sin(w,(a + b))

Qube Step 3: score possible outputs ¢ using a dot product.

Que=U,-B,, . U= (E_.E_) = (cos(wc), sin(wc))

Q.(Clock) = cos(wi(a + b — ¢)) Q. (Pizza) = |cos(w(a — b)/2)| cos(wy(a + b — ¢))

&) _—8—
. il\\ P 8
Vs N / Same-label predictions
[\ are spread over two =5 (mod 12)
Same-label predictions slices of pizza PY ®
’ collapse to a number - 268
\ on a clock ® 1245 I
\ ¢ o9 ‘
10+7 [
N ol @
h | L
: | N o
® 5 — o

2+3=1+4=12+5=11+6
=10+7=9+8=5 (mod
Image from [2306.17844] The Clock and the Pizza: Two Stories in Me+cha(8|st|c Explanation of Neural Networks

26

https://arxiv.org/abs/2306.17844
https://www.neelnanda.io/grokking-paper

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAE

Budget (p*d_mlp + p?)

We need ¢(p? d_mlp) just to multiply all the matrices
With this budget, we can compute everything except the MLP noise by brute force
The only interp is “unembed is low-rank”

“2D fourier basis” = requires ¢(p? d_computation) to validate

Norm of Fourier Components of Neuron Acts

00000

ogggmgegugugrgugeguguge
8a5R335858533a523a3a3a3

mmmmmmmmmmmmmmmmmmmmmmm

WO RESNGRERGEESEESYG 27

oooooooo

https://colab.research.google.com/drive/1F6_1_cWXE5M7WocUcpQWp3v8z4b1jL20#scrollTo=UuI6zMAxjU1l&line=1&uniqifier=1

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAE

Explaining Pizza MLP in ¢{p d_mlp)

Enough to brute force the MLP behavior (w/o noise)

1.00
L.4 Approximation

0.50 Everything becomes much clearer after realigning the matrices. For a pizza and its two corresponding
principal embedding / unembedding dimensions, W, [a] + W, [b] = cos(wi(a — b)/2) - (cos(wy.(a +
0.25 b)/2), sin(wy(a + b)/2)) will be mapped by realigned W into its corresponding columns (which
0.00 are different for every pizza), added with by and apply ReLU. The result will then be mapped by the
realigned W5, added with realigned by, and finally multipled by (cos(wyc), sin(wgc)).

—0:25 For the first two principal dimensions, realigned W, has 44 corresponding columns (with coefficients

-0.50 of absolute value > 0.1). Let the embedded input be (z,y) = W[a] + W, [b] = cos(wk(a — b)/2) -
075 — e (cos(wg(a + b)/2), sin(wg(a + b)/2)), the intermediate columns are

—— |cos(t)|-[sin(t)] ReLU([0.530 — 1.135y +0.253, —0.1642 — 1.100y 4 0.205, 1.210z — 0.370y +0.198, —0.478z —

-1.00 1.072y + 0.215,-1.017z + 0.799y + 0.249,0.342z — 0.048y -+ 0.085,1.149z — 0.598y

0 1 2 3 4 5 6 0.212, —0.443z 4 1.336y +0.159, —1.5802 — 0.000y +0.131, —1.463x +0.410y +0.178, 1.038z +

0.905y + 0.190,0.568z + 1.188y + 0.128,0.235z — 1.337y + 0.164, —1.180z + 1.052y

Figure 8: |cos(t)| | |sin(t)| is approximately cos(2t) forany t € R 0.139, —0.173z+0.918y +0.148, —0.200z + 1.060y +0.173, —1.3422 +0.390y +0.256, 0.105z —

1.246y + 0.209,0.115z + 1.293y + 0.197,0.252z + 1.247y + 0.140, —0.493z + 1.252y +

0.213,1.1207 + 0.262y + 0.239,0.668z + 1.096y + 0.205, —0.487x — 1.302y + 0.145, 1.134z —

= gc"S(;)vS'z”“” 0.862y + 0.273,1.143z + 0.435y + 0.171, —1.285z — 0.644y + 0.142, —1.454z — 0.285y +
= 2§(%5;c‘0"5(t’)055in(t)) 0.218, —0.924z + 1.068y 4 0.145, —0.401z + 0.167y + 0.106, —0.411x — 1.389y + 0.249, 1.422z

: — 0.117y + 0.227,—0.859z — 0.778y + 0.121, —0.528x — 0.216y + 0.097, —0.884x — 0.724y +

0.171,1.193z+0.724y +0.131, 1.08621 0.66 Ty +0.218, 0.402z+ 1.240y 1 0.213, 1.069z — 0.903y |

0.120,0.506z — 1.042y + 0.153, 1.404z — 0.064y + 0.152, 0.6962 — 1.249y + 0.199, —0.752z —

0.880y + 0.106, —0.956z — 0.581y + 0.223]).

For the first principal unembedding dimension, it will be taken dot product with

[1.326,0.179,0.142, —0.458, 1.101, —0.083,0.621, 1.255, —0.709, 0.123, —1.346, —0.571, 1.016,
1.337,0.732, 0.839, 0.129, 0.804, 0.377, 0.078, 1.322, —1.021, —0.799, —0.339, 1.117, —1.162,
—1.423, —1.157,1.363,0.156, —0.165, —0.451, —1.101, —0.572, —1.180, —1.386, —1.346, —0.226,
1.091,1.159, —0.524, 1.441, —0.949, —1.248].

0 1 2 3 4 5 6 Call this function f(z,y). When we plug in z = cos(t),y = sin(t), we get a function that well-
approximated 8 cos(2t + 2) (Figure [26). Therefore, let ¢ — wi(a + b)/2, the dot product will be

Figure 26: f(cos(t), sin(t)) well-approximates 8 cos(2t + 2). e gtor the hassand saling. Ths compce e picre e dcsbed shore. ' g

[2306.17844] The Clock and the Pizza: Two Stories in Mechanistic Explanation of Neural Networks

https://arxiv.org/pdf/2306.17844.pdf

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAE

Budget 7(p + d_mlp): Numerical Integration

sublinear in total parameter count = explanation w/ understanding
Ap + d_mlp) bounds = evidence that numerical integration is “what’s really going on”
Absolute error: 0.6 (vs 0.04 empirical error; vs 0.85 baseline)

Inability to reduce error = lacking understanding (how to align & scale intervals)

1.25 1.
1.00 -
0.75 |
0.50 |
0.25 |
0.00 -|
—0.25 |
—0.50 -

/7T ReLU (cos(k(a +b)/2 + ¢)) cos(2¢ +kc) d¢
h (8)

h(¢)

= % cos(k(a+b—c))

29

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAE

Numerical Integration: Infinite-Width Limit

> fal€)ge(JEZGGE:
| c oo
gc(gi)w
e A (3 &

HHl J.

Current research question: When is this non-vacuous / interesting? 30

Sparsity Penalty in SAEs

logits
t
unembed Our goal is to decompose the MLP activations
¢ with a sparse, overcomplete autoencoder.
“features” (512-131,072)
+
MLP (ReLU)
i
i 1
ho| | A
1 1 t
embed
T
tokens

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAE

' Run A/0 (512 features) V)
@ Run A/1(4,096 features)
° Run A/2 (16,384 features)

Arabic script °
features

base64

features = »
P @9
° .c

Ultralow density
and dead neurons

oo

Images from https://transformer-circuits.pub/2023/monosemantic-features 31

https://transformer-circuits.pub/2023/monosemantic-features

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAE

~

Too much human labor

Tanh Penalty in Dictionary Learning

Adam Jermyn, Adly Templeton, Joshua Batson, Trenton Bricken

We found that autoencoders trained with a tanh penalty were a Pareto improvement in the

HOW CAN WE TELL IF THE AUTOENCODER IS WORKING? space of LO and loss recovered, often by a wide margin. Unfortunately, we found that the

Qatures in these autoencoders were much harder to interpret. /
Usually in machine learning we can quite easily tell if a method is working by looking at an
easily-measured quantity like the test loss. We spent quite some time searching for an
equivalent metric to guide our efforts here, and unfortunately have yet to find anything https://transformer-circuits.pub/2024/feb-update/index.html#dict-learning-tanh
satisfactory.
Thus we ended up using a combination of several additional metrics to guide our
investigations:

1. Manual inspection: Do the features seem interpretable?
We think it would be very helpful if we could identify better metrics for dictionary learning
solutions from sparse autoencoders trained on transformers.
32

https://transformer-circuits.pub/2023/monosemantic-features/index.html#setup-autoencoder

https://transformer-circuits.pub/2023/monosemantic-features/index.html#setup-autoencoder
https://transformer-circuits.pub/2024/feb-update/index.html#dict-learning-tanh

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAE

Sparsity Penalty in SAEs

Current sparsity penalty: activations.abs () .sum{()

What do SAEs get you?
Case analysis structure in proofs

L1 norm: almost fine if downstream network decomposes additively
not remotely useful if downstream task is non-linear

Proofs-frame suggested sparsity penalty:
(1 + activations.abs()) .prod()
Oor activations.abs () .loglp() .sum/()

33

Overview

Proofs Approach

Case Study: Max of 4

Applications: Modular Arithmetic and SAE

Sparsity Penalties in SAEs

Superposition: 4 features represented in 2D space (non-uniform)

Instance #1 Instance #2 Instance #3 Instance #4 Instance #5 Instance #6 Instance #7 Instance #8
1 1 14 14 14 14 1 1
0 0+ 0 0 04 04 0 0
-1 -1 -1 -1 -1 -1+ -1 -1
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

14 14 14 1 14 1 14 14
o0 @ 01] 0 4 0 ® 0 [0 L] o @ 0 ‘
-1 11 -1 -1 -1 -1 -1 -1
— —— — — — — — —
10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1

Step 0/20000: no resampling yet ((‘prodlp’, '5x as many features')), first row = encoder, second row = decoder

14 14 14 14 14 14 14 14
0 . 0 ' 0 ’ 0 . 04 ‘ 04 . 0 L) 0 ‘
-1 -1 -1+ -1+ -1+ -1 -11 -1
10 1 10 1 10 1 10 1 0 1 10 1 10 1 10 1
34

https://tinyurl.com/sae-prod1p-colab

https://tinyurl.com/sae-prod1p-colab

