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|. Structural social science



What is structural social science?

For the last thirty years, empirical social research has
been dominated by the sample survey. But as usually
practiced, using random sampling of individuals, the
survey is a sociological meatgrinder, tearing the indi-
vidual from his social context and guaranteeing that
nobody in the study interacts with anyone else in it.
It 1s a little like a biologist putting his experimental
animals through a hamburger machine and looking
at every hundredth cell through a microscope; anato-
my and physiology get lost, structure and function
disappear, and one is left with cell biology....If our
aim is to understand people’s behavior rather than
simply to record it, we want to know about primary
groups, neighborhoods, organizations, social circles,
and communities; about interaction, communication,
role expectations, and social control.



What is structural social science?

Mainstream social research was and still is focused solely on studying
individuals.

It neglects the social aspect of behaviour: how individuals interact and
influence each other.

Structural social science: social science research that focuses on
studying the relationships between individuals rather than the
individuals themselves.



Social network analysis

Since 1960s/70s: development of formal methods centered on using
networks to study relationships and patterns

The structural approach has an impact well beyond social science:

Most methods used today in Network Science were first developed by
social network scientists.



1. Algebraic analysis of graphs: role and
positional analysis



Multirelational graphs

Multirelational graphs:

e nodes: represent social actors or positions

« Edges (directed or not, labelled by a relation):
represent relationships between social actors or
positions



Multirelational graphs

More formally, we define a k-relational graph to be a pair (V, {Ai}:_1>

where:

e Vs afinite set of vertices

e A ..., A, are ‘V‘ X ‘V‘ -matrices with Boolean entries (i.e., O or 1)
that we call matrices of relations



(Running) example

Here, nodes represent employees in a firm, the relation H encodes
“being the supervisor of”, and relation L encodes “being able to sub in
for”
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Position and roles

collections of actors who are similar in their relationships

to others
patterns of relationships among actors or positions
In a kinship sibling
network we have that the relations
“sibling of a mother” and “aunt" tie the mothey ,
aun
same pairs of actors together, and thus mother

correspond to a “role”. @ ®



Positional analysis on multirelational graphs

study blockmodels of a given multirelational graph, i.e.,:

multirelational graph > reduced multirelational graph

U U



Positional analysis on multirelational graphs

study blockmodels of a given multirelational graph, i.e.,:

multirelational graph > reduced multirelational graph

U U




Equivalence relations that capture similarity

Given this network: o

AN
A\

o
° ®
We want to partition the nodes into blocks of similar nodes.




Structural equivalence

two nodes
are structurally equivalent if they
have exactly the same neighbours

two actors are structurally
equivalent if they supervise the same
people and are supervised by exactly the
same.

/LN
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Structural equivalence

Let (V, {Ai}:_1> be a multirelational graph.

An equivalence relation R C V' X V'is a structural equivalence iff for
allv,v” € V' we have:

(v,v’) € R iff vand v’ have exactly the same neighbours under all
relations.



Structural equivalence

Considering each relation separately, we obtain the following partitions
for structural equivalence:

H: L:
\/\ C N0 — Q

However, no two pairs of nodes in the network have exactly the
same neighbours under both relations.



Regular equivalence

for two actors to occupy the same
social position we require them to interact with the same people.



Regular equivalence

for two actors to occupy the same
social position we require them to interact with the same people.

two nodes

are regularly equivalent if they / l \
have neighbours who themselves

are regularly equivalent. / \ l / \



Regular equivalence

Let <V, {Ai}j_1> be a multirelational graph.

An equivalence relation R C V' X V'is a regular equivalence iff for all
v, v € Vwehave (v,v’) € Rimplies, foralli=1, ..., r:

. ifvo wisan edge, then there exists w’ with (w, w’) € R such that

)l ) *
v’ —> w’isan edge

. ifv< wisan edge, then there exists w’ with (w, w’) € R such that
v’ < w’isan edge.



Regular equivalence

The set of regular equivalence relations on a given set of
vertices is a complete lattice with respect to inclusion.

The maximum regular equivalence for our running example,
under both relations, is:

H: \ L: s,
Col )
(N ==



Positional analysis on multirelational graphs

multirelational graph > reduced multirelational graph

U U




Role analysis



Role analysis

Role analysis’s aim is to study all possible compound relations and to
find or impose equalities between them.



Role analysis

Role analysis’s aim is to study all possible compound relations and to
find or impose equalities between them.

Given a multirelational graph (V, {Ai}j_1> its semigroup

of roles is the semigroup SG(A,, ..., A,) generatedby A, ..., A,, with
binary operation given by Boolean matrix multiplication.

study homomorphic reductions of the semigroup of roles, e.g.,

SG(A, ..., A)>» S



Running example

Quotient by congruence relation obtained
by setting L=id

o H I HL | HH
i HH | H HH 0
# HL i HL | HH
HL || HH | H HH 0
HH 0 H 0 0

o H id | HH

H HH | H 0

id H id | HH
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Given <V, {Ai}:=1) > (I_/, {Ai}:=1> under what conditions is

SG(A,, ..., A,) ahomomorphic reduction of SG(Ay, ..., A,.)?

G = (V.{A}L,)  SG ({A})

¢

6' = (V, {A}e,) G ({AL)




Functoriality of semigroup of roles assignment

e objects: k-relational graphs
surj « morphisms: surjective k-relational graph
homomorphisms that are locally surjective

Graph

SemiGroupsurj e objects: semigroups
e morphisms: surjective semigroup homomorphisms

The semigroup of roles assignment induces a functor

Role: Graphg,; — SemiGroupg,; .

surj



Functoriality of semigroup of roles assignment

Graoh e objects: k-relational graphs
ra - . . . -
Plsur; « morphisms: surjective k-relational graph ~ ""ese glve exactly
] _ . the blockmodels
homomorphisms that are locally surjective

associated to
regular equivalences

SemiGroupg,; objects: semigroups
e morphisms: surjective semigroup homomorphisms

The semigroup of roles assignment induces a functor

Role: Graphg,; — SemiGroupg,; .



What is this good for?

Gives a natural choice for homomorphic reductions in role analysis

Allows to tie several iterations of positional analysis to role analysis

Conceptual clarity

Stability questions: we could ask, e.g., is Role Lipschitz?



Functoriality theorem in action

o || H| L |HL|HH
H [[HH | HL [HH | 0
L |HL| L [ HL | HH
HL |[HH [ HL [HH | 0
HH{ 0 [HH| 0 | 0
o || H | T |AH
H |HH| H | 0
L |AH| T |HA
HH || o |HHA| o




Here we are barely scratching the surface

LINTON C.FREEMAN

STRUCTURAL ANALYSIS IN THE SOCIAL SCIENCES

Social Network
Analysis

Methods and Applications

Stanley Wasserman and Katherine Faust




I1l. Higher-order relations



Why higher-order models?

coauthorship systems.
We consider papers in different disciplines, e.g.
- algebraic topology (A)
- deep learning (D)

Papers in either A or D encode co-authorship relations between authors
of each paper.

How shall we model this?



Why higher-order models?

Roft

We encode pairwise relationships between Motamed /\ Otter

authors, but we loose more refined information.
We label edges according to the topics.




Why higher-order models?

Roft

We encode pairwise relationships between authors,  wotamed /\ Otter

but we loose more refined information. We label
edges according to the topics.

2nd author

1st author

We can encode, e.g., first or last authorship in
applied papers. We label edges according to the
to p | CS. nth author



Why higher-order models? Rof

Motamed /\ Otter

We encode a paper in topic A or D with n authors
by an n — 1-simplex labelled by A or D.



Why higher-order models?

Motamed /\ Otter

We encode a paper in topic A or D with n authors
by an n-simplex labelled by A or D.

here we also encode information about all co-authorship between

subsets of the set of n authors.
We can interpret this model as follows: simplices encode co-authorship
between their vertices, and maximal simplices represent papers.



Why higher-order models?

Roft

Motamed Otter

Hyperedges represent papers.




Why higher-order models?

Hyperedges represent papers.

Directed hyperedges represent papers.
We can additionally, e.g., encode
information about first and last author.

1st author
o

last author

Roft

Motamed

Otter

author 2
@

author n — 1



Why higher-order models?

2nd author

i
Ro Roff 1st author
Roff ¢
1st author °
Motamed Otter St i
Motamed Otter ®
last au

thor
nth author

Each model captures different type of information: in general
no model is better than any other.



The objective

Generalise, to hypergraphs/simplicial complexes:
e Positional analysis

« Role analysis

e Tie the analyses together through a functoriality result
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regular equivalences
can be generalised through
bisimulations on coalgebras

Nima Motamed, Utrecht University



IV. Coalgebraic analysis of hypergraphs



Coalgebras

coalgebras arose in the 1970s
as a way to develop a unified framework for sequential machines and
control systems.

coalgebras capture the behaviour of a system.

states | transitions



Example: non-deterministic transition

systems
Let X be a finite set.

A non-deterministic transition systemisamap a: X - L(X).



Example: non-deterministic transition

systems
Let X be a finite set.

A non-deterministic transition systemisamap a: X - L(X).

X = {xo, xl,xz}

a(xo) = {xp. %}
() = 0] /
a(xy) = {x}
Such a system can be represented graphically 5’31 \_,/332

by drawing a directed edge from each state
to each of the states in its set of transitions:



Example: labelled non-deterministic
transition systems

Let X and A be finite sets.
A labelled non-deterministic transition systemsisa map a: X - P(A X X).

Example: X = {xo, xl,xz} and A = {a,b}.

L0
a<x()) — { (CZ, xl)’ (a, X2) } a/ \C{l
a(xl) = : v

a(x,) = {(b,x))} T1 ‘\l—)/xz



Example: discrete probabilistic systems: Markov
chains

Let X be a finite set, and let Z(X) denote the set of discrete probability
distributions on X:

D(X) = {,u: X —[0,1] | Z,u(:z:) = 1} .

zeX

A discrete probabilistic system isa map a: X - J(X).



Example: discrete probabilistic systems: Markov
chains

Let X be a finite set, and let Z(X) denote the set of discrete probability

distributions on X:
D(X) {,u: X —[0,1] | Z,u(:z:) = 1} .

zeX

A discrete probabilistic system isa map a: X - J(X).

X = {xo, xl,xz} where y is defined as:
() = //\
(X(.Xz) = 5)61 xry — % 1‘1\-—/172
(X(.X?2> —H T g

3



Coalgebra: definition

Let T": Set — Set a functor. A T-coalgebra is a pair (A, @) where A is a
setand a: A — TA is a map of sets.



Coalgebra: definition

Let T": Set — Set a functor. A T-coalgebra is a pair (A, @) where A is a
setand a: A — TA is a map of sets.

graphs as coalgebras. Given a We have:
directed graph (V, E), we can encode it by Let C = Set. The P-coalgebras
specifying its out-neighborhood function are directed graphs.

NtV — P(V)
v {weV|(v,w) € E}



Multi-relational graphs as coalgebras

More generally, k-relational directed graphs are F-coalgebras where

F:Set — Set

is the functor induced by the object-level map V+— P(A X V)
where A = {1...., k}.



T-coalgebra homomorphisms

Let T: Set — Set a functor.

A T-coalgebra homomorphism (A, a) — (B, f)isamap f: A — Bsuch that
the following diagram commutes:

A . B
|
TA —— TB

rf



Example: homomorphisms of &?-coalgebras

Given two directed graphs G = (V, E) and G’ = (V’, E’), a coalgebra
homomorphism (V, Ng‘”) — (V,NZ") isamap V' — V" such that the
following diagram commutes:

f
v V!

out out
NG NGI

P(V) 5 P(V")



Example: homomorphisms of &?-coalgebras

Given two directed graphs G = (V, E) and G’ = (V’, E’), a coalgebra
homomorphism (V, Ng‘”) — (V,NZ") isamap V' — V" such that the
following diagram commutes:

f This is equivalent to the following two conditions:
" ad (i) Edgesin G are sent to edges in G’

out out
NG NGI

7’(VV) W 7’(\{/’) (ii) Vv € Vand for any edge f(v) — yin G’ there
exists v’ € V'such that v — v’ isan edge in G.



Hypergraphs as 2 9?-coalgebras

We restrict ourselves to a special type of directed hypergraph, in which the tail
of each directed hyperedge is a singleton:

° > °

everything can be extended to more general hypergraphs if one
considers dialgebras instead of coalgebras.

In what follows: A (directed) hypergraph is a pair H = (V, R) where V'is a finite
setandR CVXPAWV).



Hypergraphs as 2 9?-coalgebras

Every hypergraph can be specified by its hyper-neighbourhood function:

V —-P(P((V))
v {XCV|(wv,X)€ R}

Let C = Set. The L P-coalgebras are directed hypergraphs.



Multirelational hypergraphs as coalgebras

An r-relational hypergraph is a pair H = (V, {Ri}i_1 r) such that
each (V, Rl-) is a hypergraph.

k-relational hypergraphs are F-coalgebras where

F:Set — Set

is the functor induced by the object-level map

Vi— P(AXPV))
where A = {1...., k}.



Bisimulations

allow to study a directed graph by focusing only on the
movements that are possible along its edges.

Introduced independently in the 1970s in computer science, modal logic
and set theory.

“The independent discovery of bisimulation in three different fields
suggests that only limited exchanges and contacts among
researchers existed at the time.”



Bisimulation equivalence

Given a functor T: Set — Set and a T-coalgebra
(A, @) a T-bisimulation equivalence on (A, a) is
an equivalence relation R C A X A together with
a T-coalgebra structure p: R — T(R) such that

the projection- induced maps A 2 RE AareT
-coalgebra homomorphisms, or in other words,
such that the following diagram commutes:




P-bisimulation equivalences are regular
equivalences

P-bisimulation equivalences on &-coalgebras are exactly
regular equivalences on directed graphs.

A similar result holds for the multirelational setting.



P-bisimulation equivalences are regular
equivalences

P-bisimulation equivalences on &-coalgebras are exactly
regular equivalences on directed graphs.

A similar result holds for the multirelational setting.

these are given by L P-bisimulation equivalences
on P P-coalgebras.



Positional analysis for T-coalgebras

Thus, we can generalise the notion of blockmodel (coming from a regular
equivalence) of a multirelational graph to, in particular, multirelational
hypergraphs:

Let T: Set — Set and a: A — TA a coalgebra and
p: R — TR a bisimulation equivalence on (A, «) . The T-blockmodel of
(A, @) with respect to p is the coequalizer in coalg(T) of

Pl
(R,p) _ (A, a)
Pz



..but wait, there is more!

The powerset functor also carries the structure of a monad, i.e., there
are natural transformations

n:ldgee = P and p: PP =P

satisfying unitality and associativity properties, where

: X X
x: X = PX) and px : PP(X) — P(X)

X = {x] Un—)UV.

VeU



Semigroup of roles for 9*-coalgebras

Like any monad, we can associate to & the Kleisli category Set 5 , with
objects sets and morphisms Setx(X,Y) = Set(X, @(Y)) :

ldentity morphisms are defined through # and composition through pu.

Given a &-coalgebra (V, a), we define the semigroup of roles
Role () as the subsemigroup of Set»(V, V') generated by

a: V- PV).



Uh-oh!

Iterated Covariant Powerset is not a Monad"

Bartek Klin?

Faculty of Mathematics, Informatics, and Mechanics
University of Warsaw
Warsaw, Poland

Julian Salamanca *

Faculty of Mathematics, Informatics, and Mechanics
University of Warsaw
Warsaw, Poland




We don’t really need a monad

Let T: Set — Set be a functor and u:TT'— T a natural transformation
such that the following diagram commutes:

TTT =% TT
wﬂ ﬂ#
TT —— T

which we call an associative multiplication.
The Kleisli semi-category Sef-has objects sets and morphisms
Setr(X,Y) = Set(X,T(Y)). Composition is defined through u.



Tying the two analyses together

Let T": Set — Set be a functor equipped with an associative
multiplication. The assignment of semigroup of roles extends to a
functor

Role: Coalg,(T) — SemiGroupy,,; .

In particular, any blockmodel of a social system modelled by a T’
-algebra induces a quotient of the associated semigroup of roles.



Multiplications on L

In 2018 John Baez asked on the n-Category Cafe. ..

Question. Does there exist an associative multiplication m: P2P? = P?? In other words, is there a
natural transformation m: P2P? = P? such that

sz m
P?pp? — p?p? = p?

equals

sz m
PP’p? — P?p? = p?.

Greg Egan answered: Yes! There are at least two:

PPPP 222 PPP L2 PP and jup : PPPP 224 PPP 2L PP

where 1 is the multiplication of the monad P.



Back to our running example: relationships
between employees in a firm

Lo e
N
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Example of partition from a bisimulation equivalence:

Multiplication 1:

S S;S

S S;S S;S;S
S$;S S;S5;S S;S;S
S;S;S S;S;S S;S;S

Multiplication 2:

S S;S

S S;S S;S;S
S$;S S;S;S S;S;S
S;S;S S;S;S S;S;S



every blockmodel of a hypergraph induces a blockmodel of
underlying graph, however, it contains more refined information.

A A,
oy AN

) b



Example of bisimulation equivalence (maximal one):
Multiplication 1:  Multiplication 2:

M
- B B

29

N2

B B B B



Maximal partition from bisimulation equivalence:

Y

i, " Multiplication 1: 7 elements

/{4 )\, Q% Z g Multiplication 2: 8 elements



Functoriality theorem in action (for mult. 1)

B S S;B S;S B;S S;S;S S;S;B
Q B B BS SB SS BS S;SS S;SB
o
S SB S;S S;S;B S;S;S S;S S;S;S S;S;S
: H S;B S;B S:SENS:S:BRERS:S:S S:SERES:S:SERS:S:S
S;S S;S.B S;S;S S;S;S S;S;S S;S;S S;S;S  S;S;S

B;S S;B S;S S;S;B S;S;S S;Si S;S;S° S:S;S
‘j ;;%i g S;S;S S;S;S S;S;S S;S;S S;S;S S;S;S  S;S;S  S;S;S
,\\M S;S;B S;S;B S;S;S S;S;S SiS)S S:S:S SS)S  SSS

v

Qs—

S B S;S S;S;S
: o — S SS S SSS S8
J
. 7 B S B SS SSS
i/ 0 S5 SSS SS SSS SS:S

S;S;8 S;S;S S;S;S S;S5;S S;S;S



The objective

Generalise, to hypergraphs/simplicial-complexes:

e Positional analysis \/

« Role analysis \/

e Tie the analyses together through a functoriality result \/



Future work and Open problems

« Easy-to-use software for practitioners

« Suite of methods to analyse lattices of bisimulations and congruences in
semigroups of relations

o General hypergraphs

o Approximate equivalences



Some references

« Coalgebraic analysis of social systems, N. Motamed, N.O., E. Roff, in
preparation

e A unified framework for equivalences in social networks, N.O., M.A. Porter,
2020

« Social Network Analysis, Wasserman, Faust, CUP, 1994
e The development of social network analysis, Freeman, EP, 2004
 Introduction to coalgebra, Jacobs, CUP, 2017

e Universal coalgebra: a theory of systems, Rutten, Theoretical Computer
Science, 2000



..joint work with

Nima Motamed, Utrecht University

Emily Roff, University of Edinburgh

Thank you!



