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I. Structural social science



Allen Barton, 1968

from The Development of Social Network Analysis, Freeman, 2004

What is structural social science?



Mainstream social research was and still is focused solely on studying 
individuals. 

It neglects the social aspect of behaviour: how individuals interact and 
influence each other. 

Structural social science: social science research that focuses on 
studying the relationships between individuals rather than the 
individuals themselves.  

What is structural social science?



Since 1960s/70s: development of formal methods centered on using 
networks to study relationships and patterns 

The structural approach has an impact well beyond social science:  
Most methods used today in Network Science were first developed by 
social network scientists. 

Social network analysis



II. Algebraic analysis of graphs: role and 
positional analysis 



Multirelational graphs
Multirelational graphs: 

• nodes: represent social actors or positions 
 e.g., employees in a firm, members of a family, 
 alliance groups within a political party 

• Edges (directed or not, labelled by a relation): 
represent relationships between social actors or 
positions 

e.g., “being the supervisor of”, “being in the 
same generation as”, “having cosponsored the 
same bill”



Multirelational graphs

More formally, we define a -relational graph to be a pair  

where: 

• V is a finite set of vertices  

•  are -matrices with Boolean entries (i.e.,  or ) 
that we call matrices of relations

𝒌 (𝑉, {𝐴𝑖}𝑟
𝑖=1)

𝐴1, …,  𝐴𝑟 𝑉 × 𝑉 0 1



(Running) example
Here, nodes represent employees in a firm, the relation H encodes 
“being the supervisor of”, and relation L encodes “being able to sub in 
for”



Position and roles

Social positions: collections of actors who are similar in their relationships 
to others 
Social roles: patterns of relationships among actors or positions 

Example of social role: In a kinship 
network we have that the relations 
“sibling of a mother” and “aunt" tie the 
same pairs of actors together, and thus 
correspond to a “role”. 



Positional analysis on multirelational graphs

multirelational graph ↠ reduced multirelational graph 

surjective graph homomorphism nodes are positions

Goal: study blockmodels of a given multirelational graph, i.e.,:



Positional analysis on multirelational graphs

multirelational graph ↠ reduced multirelational graph 

surjective graph homomorphism nodes are positions

Example:

↠

Goal: study blockmodels of a given multirelational graph, i.e.,:



Equivalence relations that capture similarity
Given this network:

We want to partition the nodes into blocks of similar nodes. 
 



Structural equivalence: two nodes 
are structurally equivalent if they 
have exactly the same neighbours

Structural equivalence

Interpretation: two actors are structurally 
equivalent if they supervise the same 
people and are supervised by exactly the 
same.



Structural equivalence

Let   be a multirelational graph. 

An equivalence relation  is a structural equivalence iff for 
all we have: 

 iff  and  have exactly the same neighbours under all 
relations.

(𝑉, {𝐴𝑖}𝑟
𝑖=1)

𝑅 ⊆ 𝑉 × 𝑉
𝑣, 𝑣’ ∈  𝑉 

(𝑣, 𝑣’) ∈  𝑅 𝑣 𝑣′ 



Considering each relation separately, we obtain the following partitions 
for structural equivalence:

Structural equivalence

However, no two pairs of nodes in the network have exactly the 
same neighbours under both relations. 



Regular equivalence

Problem with structural equivalence: for two actors to occupy the same 
social position we require them to interact with the same people. 



Regular equivalence

Problem with structural equivalence: for two actors to occupy the same 
social position we require them to interact with the same people. 

Regular equivalence: two nodes 
are regularly equivalent if they 
have neighbours who themselves 
are regularly equivalent.



Regular equivalence

Let   be a multirelational graph. 

An equivalence relation  is a regular equivalence iff for all 
we have  implies, for all : 

• if is an edge, then there exists w’ with  such that 
 is an edge 

• if  is an edge, then there exists w’ with  such that 
 is an edge. 

(𝑉, {𝐴𝑖}𝑟
𝑖=1)

𝑅 ⊆ 𝑉 × 𝑉
𝑣, 𝑣’ ∈  𝑉  (𝑣, 𝑣’) ∈  𝑅 𝑖 = 1, …,  𝑟

𝑣 𝑖 𝑤  (𝑤, 𝑤’) ∈ 𝑅
𝑣’ 𝑖  𝑤’

 𝑣 𝑖 𝑤 (𝑤, 𝑤’) ∈ 𝑅
𝑣’ 𝑖  𝑤’



Regular equivalence

Note: The set of regular equivalence relations on a given set of 
vertices is a complete lattice with respect to inclusion.

The maximum regular equivalence for our running example, 
under both relations, is:



Positional analysis on multirelational graphs

multirelational graph ↠ reduced multirelational graph 

surjective graph homomorphism nodes are positions

Example:

↠



Role analysis



Role analysis
Role analysis’s aim is to study all possible compound relations and to 
find or impose equalities between them.



Role analysis
Role analysis’s aim is to study all possible compound relations and to 
find or impose equalities between them.

Definition. Given a multirelational graph   its semigroup 

of roles is the semigroup  generated by , with 
binary operation given by Boolean matrix multiplication.

(𝑉, {𝐴𝑖}𝑟
𝑖=1)

𝑆𝐺(𝐴1, …,  𝐴𝑟) 𝐴1, …,  𝐴𝑟

Goal: study homomorphic reductions of the semigroup of roles, e.g., 

 S𝑆𝐺(𝐴1, …,  𝐴𝑟) ↠



Running example

↠

Quotient by congruence relation obtained 
by setting L=id



Combining positional and role analysis

↠

↠



Question: Given  under what conditions is 

 a homomorphic reduction of ?
(𝑉, {𝐴𝑖}𝑟

𝑖=1) ↠ (�̄�, {�̄�𝑖}𝑟
𝑖=1)

𝑆𝐺(�̄�1, …,  �̄�𝑟) 𝑆𝐺(𝐴1, …,  𝐴𝑟)



Functoriality of semigroup of roles assignment

Theorem (O., Porter 2020 & Motamed, O., Roff 2025) 
The semigroup of roles assignment induces a functor 

  .Role:  Graphsurj  →  SemiGroupsurj

Graphsurj
• objects: k-relational graphs 
• morphisms: surjective k-relational graph 

homomorphisms that are locally surjective

SemiGroupsurj • objects: semigroups 
• morphisms: surjective semigroup homomorphisms



Functoriality of semigroup of roles assignment

Theorem (O., Porter 2020 & Motamed, O., Roff 2025) 
The semigroup of roles assignment induces a functor 

  .Role:  Graphsurj  →  SemiGroupsurj

Graphsurj
• objects: k-relational graphs 
• morphisms: surjective k-relational graph 

homomorphisms that are locally surjective

SemiGroupsurj • objects: semigroups 
• morphisms: surjective semigroup homomorphisms

These give exactly 
the blockmodels 

associated to 
regular equivalences



What is this good for?

• Gives a natural choice for homomorphic reductions in role analysis 

• Allows to tie several iterations of positional analysis to role analysis 

• Conceptual clarity 

• Stability questions: we could ask, e.g., is Role Lipschitz?



Functoriality theorem in action

↠ ↠

⟼

⟼



Here we are barely scratching the surface
Some further reading..



III. Higher-order relations 



Why higher-order models?

Example: coauthorship systems. 
We consider papers in different disciplines, e.g. 
 - algebraic topology (A) 
 - deep learning (D) 
Papers in either A or D encode co-authorship relations between authors 
of each paper. 

How shall we model this?



• Undirected graphs, i.e.  with  
We encode pairwise relationships between 
authors, but we loose more refined information. 
We label edges according to the topics.

(𝑉, 𝐸) 𝐸 ⊆ 𝒫2(𝑉 )

Why higher-order models?



• Undirected graphs, i.e.  with  
We encode pairwise relationships between authors, 
but we loose more refined information. We label 
edges according to the topics. 

• Directed graphs, i.e.,  with  
We can encode, e.g., first or last authorship in 
applied papers. We label edges according to the 
topics.

(𝑉, 𝐸) 𝐸 ⊆ 𝒫2(𝑉 )

(𝑉, 𝐸) 𝐸 ⊆ 𝑉 × 𝑉

Why higher-order models?



Why higher-order models?

• Simplicial complexes, i.e.,  with  
downward closed 

We encode a paper in topic A or D with  authors 
by an -simplex labelled by A or D.

(𝑉, Σ) Σ ⊆ 𝒫 (𝑉 )

𝑛
𝑛 − 1



Why higher-order models?

• Simplicial complexes, i.e.,  with  
downward closed 

We encode a paper in topic A or D with  authors 
by an -simplex labelled by A or D.

(𝑉, Σ) Σ ⊆ 𝒫 (𝑉 )

𝑛
𝑛

Note: here we also encode information about all co-authorship between 
subsets of the set of  authors.  
We can interpret this model as follows: simplices encode co-authorship 
between their vertices, and maximal simplices represent papers.

𝑛



Why higher-order models?
• Undirected hypergraphs, i.e.,  

with    
Hyperedges represent papers.

(𝑉, 𝐻)
H ⊆ 𝒫 (𝑉 )



Why higher-order models?
• Undirected hypergraphs, i.e.,  

with    
Hyperedges represent papers. 

• Directed hypergraphs, i.e.,  with D
 

Directed hyperedges represent papers.  
We can additionally, e.g., encode 
information about first and last author. 

(𝑉, 𝐻)
H ⊆ 𝒫 (𝑉 )

(𝑉, 𝐷)
⊆ 𝒫(𝑉 ) × 𝒫(𝑉 )



Why higher-order models?

Each model captures different type of information: in general 
no model is better than any other.



The objective

Generalise, to hypergraphs/simplicial complexes: 

•  Positional analysis 

• Role analysis 

• Tie the analyses together through a functoriality result



AMS MRC 2022 on 
Applied Category Theory



Nima’s insight: regular equivalences 
can be generalised through 
bisimulations on coalgebras 

Nima Motamed, Utrecht University



IV. Coalgebraic analysis of hypergraphs 



Coalgebras

Categorical approach to systems theory: coalgebras arose in the 1970s  
as a way to develop a unified framework for sequential machines and 
control systems.

In a nutshell: coalgebras capture the behaviour of a system.

states transitions⟶

transition assigning map



Example: non-deterministic transition 
systems

Let  be a finite set.  
A non-deterministic transition system is a map 

𝑋
𝛼:𝑋 → 𝒫(𝑋) .



Example: non-deterministic transition 
systems

Let  be a finite set.  
A non-deterministic transition system is a map 

𝑋
𝛼:𝑋 → 𝒫(𝑋) .

Example:  
  

 

𝑋 = {𝑥0, 𝑥1, 𝑥2}

𝛼(𝑥0) = {𝑥1, 𝑥2}
𝛼(𝑥1) = {𝑥0}
𝛼(𝑥2) = {𝑥1}

Such a system can be represented graphically 
by drawing a directed edge from each state 
to each of the states in its set of transitions:



Example: labelled non-deterministic 
transition systems
Let  and  be finite sets.  
A labelled non-deterministic transition systems is a map 

𝑋 𝐴
𝛼:𝑋 → 𝒫(𝐴 × 𝑋) .

Example:  and  
  

 

𝑋 = {𝑥0, 𝑥1, 𝑥2} 𝐴 = {𝑎, 𝑏} .

𝛼(𝑥0) = {(𝑎, 𝑥1), (𝑎, 𝑥2)}
𝛼(𝑥1) = ∅
𝛼(𝑥2) = {(𝑏, 𝑥1)}



Example: discrete probabilistic systems: Markov 
chains
Let  be a finite set, and let  denote the set of discrete probability 
distributions on 

𝑋 𝒟(𝑋)
𝑋:

A discrete probabilistic system is a map .𝛼:𝑋 → 𝒟(𝑋)



Example: discrete probabilistic systems: Markov 
chains
Let  be a finite set, and let  denote the set of discrete probability 
distributions on 

𝑋 𝒟(𝑋)
𝑋:

A discrete probabilistic system is a map .𝛼:𝑋 → 𝒟(𝑋)

Example:  
  
  

  

𝑋 = {𝑥0, 𝑥1, 𝑥2}
𝛼(𝑥1) = 𝛿𝑥0

𝛼(𝑥2) = 𝛿𝑥1

𝛼(𝑥2) = 𝜇

where  is defined as:  𝜇



Coalgebra: definition

Let  a functor. A -coalgebra is a pair  where  is a 
set and  is a map of sets.

𝑇 :𝑆𝑒𝑡 → 𝑆𝑒𝑡 𝑻 (𝐴, 𝛼) 𝐴
𝛼:𝐴 → 𝑇𝐴



Coalgebra: definition

Let  a functor. A -coalgebra is a pair  where  is a 
set and  is a map of sets.

𝑇 :𝑆𝑒𝑡 → 𝑆𝑒𝑡 𝑻 (𝐴, 𝛼) 𝐴
𝛼:𝐴 → 𝑇𝐴

Example: graphs as coalgebras. Given a 
directed graph , we can encode it by 
specifying its out-neighborhood function

(𝑉, 𝐸)
We have: 
Let . The -coalgebras 
are directed graphs.

𝐶 = 𝑆𝑒𝑡 𝒫



Multi-relational graphs as coalgebras

More generally, -relational directed graphs are -coalgebras where 

is the functor induced by the object-level map     

where 

𝑘 𝐹

𝐹 :𝑆𝑒𝑡 → 𝑆𝑒𝑡

𝑉 ⟼ 𝒫(𝐴 × 𝑉 )
𝐴 = {1,…,  𝑘} .



-coalgebra homomorphisms𝑇
Let  a functor. 

A -coalgebra homomorphism  is a map  such that 
the following diagram commutes:  

𝑇 :𝑆𝑒𝑡 → 𝑆𝑒𝑡

𝑻 (𝐴, 𝛼) → (𝐵, 𝛽) 𝑓:𝐴 → 𝐵



Example: homomorphisms of -coalgebras𝒫

Given two directed graphs  and , a coalgebra 
homomorphism  is a map  such that the 
following diagram commutes:

𝐺 = (𝑉, 𝐸) 𝐺′ = (𝑉′ , 𝐸′ )
(𝑉, 𝑁𝑜𝑢𝑡

𝐺 ) → (𝑉′ , 𝑁𝑜𝑢𝑡
𝐺′ 

) 𝑉 → 𝑉 ′ 



Example: homomorphisms of -coalgebras𝒫

Given two directed graphs  and , a coalgebra 
homomorphism  is a map  such that the 
following diagram commutes:

𝐺 = (𝑉, 𝐸) 𝐺′ = (𝑉′ , 𝐸′ )
(𝑉, 𝑁𝑜𝑢𝑡

𝐺 ) → (𝑉′ , 𝑁𝑜𝑢𝑡
𝐺′ 

) 𝑉 → 𝑉 ′ 

This is equivalent to the following two conditions: 
(i) Edges in  are sent to edges in   
 “f is a graph homomorphism” 

(ii)  and for any edge  in  there 
exists  such that  is an edge in .  
  “f reflects edges”  

𝐺 𝐺′ 

∀𝑣 ∈ 𝑉 𝑓(𝑣) → 𝑦 𝐺′ 

𝑣′ ∈ 𝑉 𝑣 → 𝑣′ 𝐺



Hypergraphs as -coalgebras𝒫𝒫
We restrict ourselves to a special type of directed hypergraph, in which the tail 
of each directed hyperedge is a singleton: 

Note: everything can be extended to more general hypergraphs if one 
considers dialgebras instead of coalgebras. 

In what follows: A (directed) hypergraph is a pair  where  is a finite 
set and R 

H = (𝑉, 𝑅) 𝑉
⊆ 𝑉 × 𝒫(𝑉 ) .



Hypergraphs as -coalgebras𝒫𝒫

Every hypergraph can be specified by its hyper-neighbourhood function:

Let . The -coalgebras are directed hypergraphs.𝐶 = 𝑆𝑒𝑡 𝒫𝒫



Multirelational hypergraphs as coalgebras

An -relational hypergraph is a pair  such that 

each  is a hypergraph.

𝒓 𝐻 = (𝑉, {𝑅𝑖}𝑖=1,  …,  𝑟
)

(𝑉, 𝑅𝑖)
-relational hypergraphs are -coalgebras where 

is the functor induced by the object-level map    
 

where 

𝑘 𝐹

𝐹 :𝑆𝑒𝑡 → 𝑆𝑒𝑡

𝑉 ⟼ 𝒫(𝐴 × 𝒫(𝑉 ))
𝐴 = {1,…,  𝑘} .



Bisimulations

Intuition: allow to study a directed graph by focusing only on the 
movements that are possible along its edges. 

Introduced independently in the 1970s in computer science, modal logic 
and set theory. 

“The independent discovery of bisimulation in three different fields 
suggests that only limited exchanges and contacts among 
researchers existed at the time.”  Sangiorgi, 2009

Sangiorgi, D. 2009. On the origins of bisimulation and coinduction. ACM Trans. Program. Lang. Syst. 



Bisimulation equivalence
Intuitively, a bisimulation equivalence on a transition system  is an 
equivalence relation  that respects the transition structure.

(𝐴, 𝛼)
𝑅 ⊆ 𝐴 × 𝐴

Given a functor  and a -coalgebra 
 a -bisimulation equivalence on is 

an equivalence relation  together with 
a -coalgebra structure  such that 
the projection- induced maps  are 
-coalgebra homomorphisms, or in other words, 
such that the following diagram commutes:

𝑇 :𝑆𝑒𝑡 → 𝑆𝑒𝑡 𝑇
(𝐴, 𝛼) 𝑻 (𝐴, 𝛼) 

𝑅 ⊆ 𝐴 × 𝐴
𝑇 𝜌:𝑅 → 𝑇(𝑅)

𝐴 𝑝1 𝑅 𝑝2 𝐴 𝑇



-bisimulation equivalences are regular 
equivalences
𝒫

Proposition: -bisimulation equivalences on -coalgebras are exactly 
regular equivalences on directed graphs.

𝒫 𝒫

A similar result holds for the multirelational setting. 



-bisimulation equivalences are regular 
equivalences
𝒫

Proposition: -bisimulation equivalences on -coalgebras are exactly 
regular equivalences on directed graphs.

𝒫 𝒫

A similar result holds for the multirelational setting. 

This gives us a way to extend regular equivalences to 
hypergraphs: these are given by -bisimulation equivalences 
on -coalgebras. 

𝒫𝒫
𝒫𝒫



Positional analysis for -coalgebras𝑇

Definition. Let  and  a coalgebra and 
 a bisimulation equivalence on  The -blockmodel of 

 with respect to  is the coequalizer in coalg(T) of  

𝑇 :𝑆𝑒𝑡 → 𝑆𝑒𝑡 𝛼:𝐴 → 𝑇𝐴
𝜌:𝑅 → 𝑇𝑅 (𝐴, 𝛼) . 𝑻
(𝑨, 𝜶) 𝝆

(𝑅, 𝜌)
𝑝1

𝑝2

(𝐴, 𝛼)

Thus, we can generalise the notion of blockmodel (coming from a regular 
equivalence) of a multirelational graph to, in particular, multirelational 
hypergraphs:



..but wait, there is more!

The powerset functor also carries the structure of a monad, i.e., there 
are natural transformations

satisfying unitality and associativity properties, where

𝜂𝑋:𝑋 → 𝒫(𝑋)
and 

𝑥 ↦ {𝑥}



Semigroup of roles for -coalgebras𝒫

Like any monad, we can associate to  the Kleisli category  , with 
objects sets and morphisms  

Identity morphisms are defined through  and composition through . 

Definition. Given a -coalgebra , we define the semigroup of roles 
 as the subsemigroup of generated by 

 

 𝒫 𝑆𝑒𝑡𝒫
𝑆𝑒𝑡𝒫(𝑋, 𝑌 ) = 𝑆𝑒𝑡(𝑋, 𝒫(𝑌 )) .

𝜂 𝜇

𝒫 (𝑉, 𝛼)
𝑅𝑜𝑙𝑒𝒫(𝛼) 𝑆𝑒𝑡𝒫(𝑉, 𝑉 ) 
𝛼:𝑉 → 𝒫(𝑉 ) .



Uh-oh!



We don’t really need a monad
Let  be a functor and  a natural transformation 
such that the following diagram commutes:

𝑇 :𝑆𝑒𝑡 → 𝑆𝑒𝑡 𝜇:𝑇 𝑇 ⟹ 𝑇

which we call an associative multiplication. 
The Kleisli semi-category  has objects sets and morphisms 

 Composition is defined through .
𝑆𝑒𝑡𝑇

𝑆𝑒𝑡𝑇(𝑋, 𝑌 ) = 𝑆𝑒𝑡(𝑋, 𝑇(𝑌 )) . 𝜇



Tying the two analyses together

Theorem [Motamed, O, Roff 2025]  
Let  be a functor equipped with an associative 
multiplication. The assignment of semigroup of roles extends to a 
functor 

 .

𝑇 :𝑆𝑒𝑡 → 𝑆𝑒𝑡

Role:Coalgsurj(𝑇 ) → SemiGroupsurj

In particular, any blockmodel of a social system modelled by a 
-algebra induces a quotient of the associated semigroup of roles. 

𝑇

Coalgebraic analysis of social systems, N. Motamed, O., E. Roff 



Multiplications on 𝒫𝒫



Back to our running example: relationships 
between employees in a firm



Just “supervision” (S)

Example of partition from a bisimulation equivalence:

Multiplication 2:

Multiplication 1:



Note: every blockmodel of a hypergraph induces a blockmodel of 
underlying graph, however, it contains more refined information.



Just “subbing in” (B)

Multiplication 1: Multiplication 2:
Example of bisimulation equivalence (maximal one):



The two combined

Multiplication 1: 7 elements 

Multiplication 2: 8 elements

Maximal partition from bisimulation equivalence:



Functoriality theorem in action (for mult. 1)

↠
↦

↦



The objective

Generalise, to hypergraphs/simplicial complexes: 

•  Positional analysis    

• Role analysis  

• Tie the analyses together through a functoriality result 



Future work and Open problems

• Easy-to-use software for practitioners 

•  Suite of methods to analyse lattices of bisimulations and congruences in 
semigroups of relations 

• General hypergraphs 

• Approximate equivalences



Some references

• Coalgebraic analysis of social systems, N. Motamed, N.O., E. Roff, in 
preparation 
• A unified framework for equivalences in social networks, N.O., M.A. Porter, 

2020  
• Social Network Analysis, Wasserman, Faust, CUP, 1994 
• The development of social network analysis, Freeman, EP, 2004 
• Introduction to coalgebra, Jacobs, CUP, 2017 
• Universal coalgebra: a theory of systems, Rutten, Theoretical Computer 

Science, 2000



Thank you!

..joint work with 

Nima Motamed, Utrecht University
Emily Roff, University of Edinburgh 


