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What is homotopy theory?

Homotopy Theory is...

a branch of mathematics, particularly within algebraic topology, that
studies continuous deformations (homotopies) of functions or mappings.

Google AI Overview Summary, May 1 2025

https://www.shapeways.com/product/6CJQ9GXWW/topology-joke
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What is homotopy theory?

Let X and Y be topological spaces. A map between them is a continuous
function.
Let I = [0, 1] denote the unit interval.

Definition

Two maps f , g : X → Y are homotopy equivalent if there exists a
homotopy

H : X ↑ I → Y

such that H(x , 0) = f (x) and H(x , 1) = g(x). In this case we write f ↓ g .

We write X ↓ Y when ↔ f : X → Y and g : Y → X s.t. fg ↓ 1Y and
gf ↓ 1X .
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Example X I and f I Y and g I Y are paths
the imageof a homotopy it fills thespacebetween
thepathsf andg It is the movie depicting a
deformationof onepathintotheother



Motivating Example: homotopy pushouts

Problem: The strict pushout is not homotopy invariant.
Example:
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Two disks gluedalong a commonboundary circle

onepointspaces D s2 not
1s cagv

v werewrite this

Ike in is

The pushouts areclearlynot
homotopyequivalent since
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Universal property of the colimit

Definition

Let C be any category, I be a small category. The colimit of X : I → C (if
it exists) is the initial object in a category of cocones for X .
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Example
The colimit of X I 6 is

the pushout
Let I be the category

O Xcel
1

2

he unive e

red cone is initial i e h as

depicted



Approach #1: Homotopy Colimits as a concept

Definition (Dwyer-Hirschorn-Kan-Smith)

A category C is a homotopical category if C contains a distinguished set
W of morphisms that satisfy

W contains all identity maps of C
W has the 2↗ of ↗ 6 property, meaning that if the first and second
composites are in W then so is each map and every composite:

• → • → • → •.
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There are two basic approaches to making colimits homotopical
in the literature

r s t

The 2 of 6 property
if sr ts eW then r s t tsr EW



Approach #1: Homotopy Colimits as a concept

The colimit is the initial object in a category of cocones for X : I → C.
Can this be adapted?

Definition

The homotopically initial objects are defined by the property that the full
subcategory spanned by them is empty or homotopically contractible.
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Approach #1: Homotopy Colimits as a concept

The homotopy colimit is a homotopically initial object in a category of
cocones for X : I → C.

Definition

Homotopically initial objects are weakly equivalent up to a homotopically
unique weak equivalence.

Problem: the concept of a homotopy colimit doesn’t produce a
construction of the homotopy colimit and allows for a lot of choices.
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Approach #2: Homotopy Colimits as a construction

Definition (Quillen, Riehl)

A model structure on a complete and cocomplete category C consists of
three classes of morphisms W , C and F such that

(C ↘W ,F ) and (C ,F ↘W ) are weak factorization systems on C and

W satisfies the 2-of-3 property.

Example:

Kristine Bauer with K. Hess, B. Johnson, J. Rasmusen (UCalgary, PIMS)Distilling hocolims May 1, 2025 9 / 21

Factorization of f

It 6 a model structure

9
objects topologicalspaces

morph continuousfunctions Fibration

weakequivs weak homotopyequiv s Era c

cofibrations inclusions Cnw

Isings
otherfactorization

theseitems are oversimplified more care
is needed



Approach #2: Homotopy Colimits as a construction

In this case, a homotopy colimit is a procedure:

Replace the morphisms in the diagram X : I → C by cofibrations up
to weak equivalence,

Take the strict colimit.

Problem: We don’t always have a model category structure on hand,
cofibrant replacement is not always functorial.
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Middle ground

Let C be a category with a terminal object ≃.

Properties of homotopy colimits

1 Let F : I↑ J → C , then hocolimI hocolimJ F ⇐= hocolimI→J F .

2 Let ω : I → J and F : J → C , then hocolimI F ⇒ ω → hocolimJ F .

3 Let C be a basepointed category* then hocolimI cst↑ = ≃.

4 Let P(0) be the trivial category then hocolimP(0) F → F (⇑).

5 If F ↓ G (defined pointwise), hocolimI F ↓ hocolimI G .

* In the live talk on May 1, I forgot to add the hypothesis that C has a
basepoint - the terminal object is also initial.
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AKA Fubini property

F i G i icob I



Where do these properties come from?

Let (A,⇓, I ,ω,ε, ϑ) be a monoidal category

Definition

A (left) A-actegory is a category C with a functor ↗ •↗ : A↑ C → C and
two natural isomorphisms

ϖx : x → I • x
µa,b,x : a • (b • x) → (a⇓ b) • x

satisfying associativity and unit conditions.

Kristine Bauer with K. Hess, B. Johnson, J. Rasmusen (UCalgary, PIMS)Distilling hocolims May 1, 2025 12 / 21



Examples
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Cat categoryof small categories
CAT category of all categories

these are monoidal using
The Cartesianproduct

Actegory structures

The trivial structure CATTriv

Action Cat x CAT
72 CAT projection

I 611 6

Unit Me 6 Ma I G 6 identity

multiplication M I Mz3,6 Mz IXT 6 identity
Mz I G
6 idea 6

Theaction istrivially unital and associative



Examples
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2 The Fun action ofCatop on CAT CAT Fun

Action Fun Cat CAT CAT

I 6 1 Fun I 6 category offunctors

multiplication µ Fun I Fun J El
Fun IX 6

fromthe usual closed structure on CAT

Unit Me 6 Fun PCO 6 where PCO is the unitof X on
Cat

This is the functortaking xeob6 to cstx
PCO 6 the unique

functor definedbyCst 6 X



Where do these properties come from?

Definition

Let C be a category and D be a 2-category with underlying category D.
Let F ,G : C → D be functors. An oplax natural transformation
ϱ : F ⇔ G is

for all x ↖ C, ϱ0(x) : F (x) → G (x), and

for all f : x → y in C, a 2-cell ϱ1(f ):

F (x)
ω0(x) !!

F (f )
""

G (x)

G(f )
""

F (y)
ω0(y)

!! G (y)

which respect identity maps and composites.
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Where do these properties come from?

Let A be a monoidal category, let C be an A-actegory, and let D be a
2-category whose underlying category D is an A-actegory.

Definition

A lax A-linear morphism from C to D is a functor F : C → D together
with an oplax natural transformation ϱ : •D ⇒ F → F ⇒ •C .

ϱ0(a, x) : a •D F (x) → F (a •C x) for all (a, x) ↖ A↑ C
ϱ1(ω, f ) for all (ω, f ) ↖ A↑ C:

a •D F (x)
ω0(a,x) !!

ε•Df
""

F (a •C x)

F (ε•Cf )
""

b •D F (y)
ω0(b,y)

!! F (b •C y)
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Where do these properties come from?

Definition

A distillation system on (Catop,CAT ) consistes of a lax Cat
op-linear

morphism
(Id , ς,E ,U) : (CAT ,Triv) → (CAT ,Fun)

which is pseudo-multiplicative and pseudo-unital.
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coherences

That is it is a Cat linear morphism CAT Triv CATFun

whoseunderlying functor CAT
CAT is ident which is

unital and multiplicative up to isomorphisminvertible 2 cell



The data of a distillation system
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There is an oplaxnaturaltransformation

So Fun I id G id Mz I G
Fun I E 6

This models the homotopy colimit

For 2 I J and Q 6 D There is a 2 cell

So
Fun J E G

d hocolin d Fox doholdingF
S d dFm

II D So

Pseudomultiplicative

Fun I Fun J G
Fm 8

Fun I G

I 80 I G

ÉTÉ.ee
so

So IXT 6



The data of a distillation system
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Pseudounital

n6 FunPCO E

Éuide So



Middle ground

Let C be a category with a terminal object ≃.

Properties of homotopy colimits

1 Pseudo-multiplicativity:

hocolimI hocolimJ F ⇐= hocolimI→J F

2 Naturality of ς1:

hocolimI F ⇒ ω → hocolimJ F

3 Naturality of ς1 and unitality*:

hocolimI cst↑ = ≃

4 Unitality:
hocolimP(0) F → F (⇑)
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special case 0 id



Examples

The conceptual definition of a homotopy colimit due to [DHKS] is
*not* an example of a distillation system (properties only hold up to
weak equivalence).

Constructive definition of a homotopy colimit using model categories
(e.g. Bousfield-Kan) are examples of distillation system.

Other constructions of homotopy colimits - e.g. using the mapping
cone to construct homotopy colimits in chain complexes - should also
work.
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