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Behavioural Equivalences

In the analysis of state-based systems, behavioural equivalences
(bisimilarity, trace equivalence, . . . ) relate states with the same
behaviour.

Applications

Comparing a system with its specification

Minimizing the state space

Analysis of model transformations

Verification of cryptographic protocols (are two protocols
equivalent from the point of view of an external observer,
a.k.a. the attacker?)
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Behavioural Equivalences

This talk: bisimilarity (and generalizations thereof . . . )

Bisimulation

Let L be a set of labels and let X be a set of states with transition
relation → ⊆ X × L× X (written x

a→ x ′).

A symmetric relation R ⊆ X × X is a bisimulation if for all pairs
(x , y) ∈ R and all states x ′ with x

a→ x ′, there exists a state y ′

with y
a→ y ′ and (x ′, y ′) ∈ R.

Two states x , y are bisimilar whenever there exists a bisimulation
R with (x , y) ∈ R (written x ∼ y).
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Behavioural Equivalences

Characterization as a two-player game

Two tokens on states x , y – Player I (the attacker) chooses a token
and makes a move – Player II (the defender) has to find an answer
with the other token – If no answer is possible, Player I wins

Two states are equivalent if and only if there is no winning
strategy for Player I.
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Behavioural Metrics

Finding a quantitative notion of behavioural equivalence . . .

Do not insist on the exact same behaviour.

Measure the behavioural distance between two states.

Make statements such as “the behaviour of two states differs
only by ε”.

; behavioural metrics
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Behavioural Metrics

Pseudo-metric space

Let X be a set. A pseudo-metric is a function d : X × X → [0, 1]
where for all x , y , z ∈ X :

1 d(x , x) = 0 (identity) (metric if (d(x , y) = 0 ⇒ x = y))

2 d(x , y) = d(y , x) (symmetry)

3 d(x , z) ≤ d(x , y) + d(y , z) (triangle inequality)

A (pseudo-)metric space is a pair (X , d) where X is a set and d is
a (pseudo-)metric on X .
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Behavioural Metrics

Non-expansive function

A non-expansive function f : X → Y between two (pseudo-)metric
spaces (X , dX ), (Y , dY ) satisfies for x , y ∈ X

dX (x , y) ≥ dY (f (x), f (y))

Note: the theory can be generalized to quantales (reversing the
order).

Barbara König Behavioural Metrics via Functor Lifting 8



Motivation: Behavioural Equivalences and Metrics Examples Coalgebra Coalgebras and Behavioural Metrics Up-To Techniques

Metric Transition Systems

Metric transition system [de Alfaro et al., 2009] (slightly simplified)

Let (M, dr ) be a metric space. A metric transition system is a tuple
(X , τ, [·]), where X is a set of states, τ ⊆ X × X is a transition
relation and every state x is assigned an element [x ] ∈ M.
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Metric space X = [0, 1] with Euclidean metric.
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Metric Transition Systems

Hausdorff metric (metric on finite sets)

Lifting a metric space (X , d) to (PfinX , d ′): for X1,X2 ⊆ X :

dH(X1,X2) = max{ max
x∈X1

min
y∈X2

d(x , y), max
y∈X2

min
x∈X1

d(x , y) }

For each element x (in X1,X2) take the closest element y in
the other set and measure the distance d(x , y)

Take the maximum of all such distances.
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Metric Transition Systems

Example: Hausdorff metric

X1 X2
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Metric Transition Systems

Example: Hausdorff metric

X1 X2
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Metric Transition Systems

Example: Hausdorff metric

X1 X2

Barbara König Behavioural Metrics via Functor Lifting 11



Motivation: Behavioural Equivalences and Metrics Examples Coalgebra Coalgebras and Behavioural Metrics Up-To Techniques

Metric Transition Systems

Distance of states in a metric transition system

Compute the smallest fixed-point of

d(x , y) = max{ dr ([x ], [y ]), dH(τ(x), τ(y))}
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Metric Transition Systems

Distance of states in a metric transition system

Compute the smallest fixed-point of

d(x , y) = max{ dr ([x ], [y ]), dH(τ(x), τ(y))}
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Probabilistic Transition Systems

Probabilistic transition system

A probabilistic transition system is a tuple (X ,T , p·), where X is a
set of states, T ⊆ X is the set of terminal states and every state
x /∈ T is assigned a probability distribution px : X → [0, 1].

Studied by Larsen/Skou [Larsen and Skou, 1989], van
Breugel/Worrell [van Breugel and Worrell, 2005] (again simplified)

Barbara König Behavioural Metrics via Functor Lifting 13



Motivation: Behavioural Equivalences and Metrics Examples Coalgebra Coalgebras and Behavioural Metrics Up-To Techniques

Probabilistic Transition Systems
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Terminal state: 4

What is the distance between states 1 and 2? ; distance ε
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Probabilistic Transition Systems

Distance of states in a probabilistic transition system

Compute the smallest fixed-point of

d(x , y) =


1 if x ∈ T , y /∈ T or x /∈ T , y ∈ T
0 if x , y ∈ T
dP(px , py ) otherwise

What does it mean to compute the distance between two
probability distributions px , py on a metric space?

Barbara König Behavioural Metrics via Functor Lifting 15



Motivation: Behavioural Equivalences and Metrics Examples Coalgebra Coalgebras and Behavioural Metrics Up-To Techniques

Transportation Problem & Duality [Villani, 2009]

Lift metric to prob. distr.

A B C

1 0 0

0 1
2

1
2

1

px

py

1
2

1
2

distances between states
probabilities of states

Interpret px as supply and py as
demand. Transporting a unit
along a distance d costs d .

What is the minimal possible
cost for transporting supply to
demand?

transport 1
2 from A to B:

cost 1
2 · 1

2 = 1
4

transport 1
2 from A to C :

cost 1 · 1
2 = 1

2

Overall cost: 3
4 (= distance

dP(px , py ))
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Transportation Problem & Duality [Villani, 2009]

Alternative: you have a logistics firm and handle transportation.
You do this by setting a price (per unit) for locations A,B,C
(prA, prB , prC ). You buy and sell for this price at every location.
Your prices have to satisfy: prB − prA ≤ d(A,B) (otherwise you
do not get the contract).

A B C

1 0 0

0 1
2

1
2

1

px

py

1
2

1
2

distances between states
probabilities of states

You want to maximize your
profit. Which prices do you set?
; prA = 0, prB = 1

2 , prC = 1

you get: 1
2 · 1

2 + 1 · 1
2 = 3

4

you pay: 0 · 1 = 0

Profit: 3
4
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Transportation Problem & Duality [Villani, 2009]

Duality in transportation theory (Kantorovich-Rubinstein duality)

The following values coincide for a metric d : X × X → [0, 1] and
two probability distributions p, q : X → [0, 1]:

The minimum of
∑

x ,y P(x , y) · d(x , y)

for all probability distributions P : X × X → [0, 1] (couplings,
indicating transport from x to y), such that

∑
y∈X P(x , y) = p(x),∑

x∈X P(x , y) = q(y) (marginal distributions are p, q)

The maximum of |
∑

x∈X f (x) · p(x)−
∑

x∈X f (x) · q(x)|

for all nonexpansive functions f : X → [0, 1]
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Generalization of Metric Transition Systems

Questions:

How can we model other types of transition systems (with
different branching types)?

How to set up the fixed-point equation in the general case?

Are there generic (and efficient) methods to compute metrics?

; use coalgebra, a general categorical theory of behavioural
equivalences, to answer these questions.

Coalgebra offers a toolbox from which transition systems with
different branching types can be constructed and analyzed.
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Functors

Typical examples of Set-endofunctors used for coalgebras

(finite) powerset functor PfinX = {Y | Y ⊆ X ,Y finite}
probability distribution functor
DX = {p : X → [0, 1] |

∑
x∈X p(x) = 1}

product functor FX = A× X (for a fixed set X )

coproduct functor (disjoint union) FX = X + B (for a fixed
set B)

combinations of these functors

The functor defines the branching type of the transition system:

powerset functor ; non-determinism

probability distribution functor ; probabilistic branching

product functor ; labelling

coproduct functor ; termination, exceptions, failure
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Coalgebras

Transition systems are now called coalgebras:

Coalgebra

Let F be a given functor. A coalgebra is a function γ : X → FX
(where X is the state set).

Metric transition systems

γ : X → M × PfinX

where M is a fixed metric space.

Probabilistic transition systems

γ : X → DX + 1

where 1 is a singleton set (1 = {
√
}), representing termination.
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Coalgebras and Behavioural Metrics

Our (fibrational) approach: [Bonchi et al., 2023]

Consider a Set-coalgebra γ : X → FX .

Lift functor on F : Set → Set to a functor on
F : PMet → PMet (transform metric on X to metric on FX )

Obtain the behavioural metric on X as the least fixpoint of
the following map f :

PMetX
F //

f

33PMetFX
γ∗
// PMetX

where PMetX is the set of pseudo-metrics on X (“fibre”
above X ) and we use reindexing:

γ∗(d) = d ◦ (γ × γ)
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Coalgebras and Behavioural Metrics

Needed: general methods for lifting a functor F to metric spaces

; Wasserstein lifting, Kantorovich lifting

Evaluation functions and predicate liftings

We need a parameter: an evaluation function (algebra)

ev : F [0, 1] → [0, 1]

Every evaluation function induces a real-valued predicate lifting:

(p : X → [0, 1]) 7→ (ev ◦ Fp : FX → [0, 1])

Notes:

this can be extended to sets of evaluation maps.

for the Wasserstein lifting, we have to put some requirements
on the evaluation map.
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Coalgebras and Behavioural Metrics

Wasserstein lifting

Let d : X × X → [0, 1] be a pseudo-metric and t1, t2 ∈ FX :

d↓F (t1, t2) = inf{ev(Fd(t)) | t ∈ F (X × X ),Fπi (t) = ti}

F (X × X )

ev◦Fd

77
⟨Fπ1,Fπ2⟩// FX × FX

d↓F
// [0, 1]

View d as a real-valued predicate and lift it.

For each pair (t1, t2) ∈ FX × FX take a coupling in F (X ×X )
that gives the optimal (least) value (direct image).
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Coalgebras and Behavioural Metrics

Kantorovich lifting (aka codensity lifting [Katsumata,Sato,’15])

Let d : X × X → [0, 1] be a pseudo-metric and t1, t2 ∈ FX :

d↑F (t1, t2) = sup{de(ev(Ff (t1)), ev(Ff (t2))) |
f : (X , d) → ([0, 1], de) non-expansive}

where de(x , y) = |x − y | for x , y ∈ [0, 1].

Given a pseudo-metric d :

Take all non-expansive maps f : (X , d) → ([0, 1], de) (right
adjoint).

Take the predicate lifting for each such map.

Generate a pseudo-metric from the predicate liftings obtained
in this way (least pseudo-metric that makes all predicate
liftings non-expansive) (left adjoint).
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Coalgebras and Behavioural Metrics

Results (Functor Lifting)

d↑F , d↓F are both pseudo-metrics (for the Wasserstein lifting
we need some constraints on the evaluation function and weak
pullback preservation)

d↑F ≤ d↓F

There are cases where d↑F < d↓F , i.e., the
Kantorovich-Rubinstein duality does not necessarily hold (e.g.
for FX = X × X ).

Non-expansive functions and isometries (distance-preserving
functions) are preserved by lifting.

The Wasserstein lifting preserves metrics (if the infimum is
always a minimum).
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Coalgebras and Behavioural Metrics

Several standard metrics can be recovered by lifting. In each of
these cases the Kantorovich-Rubinstein duality holds.

functor evaluation fct. resulting metric

Pfin ev(R ⊆ [0, 1]) = maxR Hausdorff
D ev(p : [0, 1] → [0, 1])

=
∑

x∈[0,1] x · p(x) Kantorovich

X + Y ev(x ∈ [0, 1]) = x distance on disjoint union
X × Y ev(x , y) = max{x , y} maximum of distances
X × Y ev(x , y) = x + y sum of distances

Last three cases: bifunctor lifting or use of multiple evaluation
maps
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Compositionality

Is functor lifting compositional?

Assume that F (X , d) = (FX , d↑F ) (Kantorovich) or
F (X , d) = (FX , d↓F ) (Wasserstein)

When does FG = F G hold?

Wasserstein:

F G ≤ FG always holds (if evaluation maps are composed)
Equality for so-called canonical liftings

Kantorovich:

FG ≤ F G always holds (if evaluation maps are composed)
Equality if F polynomial and chosen evaluation maps

Useful for defining up-to techniques that help to simplify
(co)inductive proofs . . .
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Up-To Techniques

Let f : L → L be a monotone function on a complete lattice. By
Knaster-Tarski this function has a least fixpoint µf (that coincides
with the least pre-fixpoint) and a greatest fixpoint νf (that
coincides with the greatest post-fixpoint).

Idea: extend the usual proof rule for pre-fixpoints to a proof rule
using an up-to function u.

f (d) ≤ d

µf ≤ d

f (u(d)) ≤ d

µf ≤ d
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Bialgebras: Combining Algebras and Coalgebras

Add an algebraic structure that interacts “nicely” with the
coalgebraic structure:

Bialgebra

Consider two functors F ,T : Set → Set and a distributive law for
a monad ζ : TF ⇒ FT .

A bialgebra for ζ consists of a T -algebra β : TX → X and an
F -coalgebra γ : X → FX so that the diagram commutes.

TX
β //

Tγ ��

X
γ // FX

TFX
ζX // FTX

Fβ

OO

Such bialgebras can be obtained by determinizing coalgebras of the
form Y → FTY . In this case X = TY .
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Up-To Techniques

Coinduction Up-To [Bonchi,Petrişan,Pous,Rot, 2017]

Given a bialgebra β : TX → X , γ : X → FX (with distr. law ζ):

Lift the functors F ,T to F ,T : PMet → PMet

This gives us an up-to function u on the fibre above PMetX :

PMetX
T //

u

33PMetTX
Σβ // PMetX

where Σβ(d)(x1, x2) = infβ(ti )=xi d(t1, t2) (direct image).
u is typically some form of metric congruence closure wrt. the
operators of the algebra.
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Up-To Techniques

Whenever ζ can be extended to a natural transformation
ζ : T F ⇒ F T (i.e., the components of ζ are non-expansive
maps), the following proof rule holds:

f (u(d)) ≤ d

µf ≤ d

Up-to functions help to find witnesses (pre-fixed-points up-to),
establishing upper bounds for least fixpoints.

Typically it is easier to show f (u(d)) ≤ d rather than f (d) ≤ d .
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Behavioural Metrics for Probabilistic Automata

y
1/2

•

x

1/2

• x ′

1

•
a 1a 1/2

1/2

a

1

Q → [0, 1]×D(Q)A

tr x(w) ε a aa aaa . . .

x 1/2 3/4 7/8 15/16 . . .
y 1/2 1/2 1/2 1/2 . . .

For a state x ∈ Q let tr x : Σ
∗ → [0, 1] assign to each word w ∈ Σ∗

the expected payoff for this word when read from x .

Directed behavioural distance between states:

d(x , y) = sup
w∈Σ∗

(tr y (w)⊖ tr x(w))

In this case: d(x , y) = 1/2.

This can be extended to probability distributions on states.
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Behavioural Metrics for Probabilistic Automata

Probabilistic determinization:

1 · y

1/2

a 1 · x

1/2

1/2 · x + 1/2 · x ′

3/4

1/4 · x + 3/4 · x ′

7/8

. . .a a a

Behavioral distance can be characterized as least fixpoint of f :

f : [0, 1]D(Q)×D(Q) → [0, 1]D(Q)×D(Q)

f (d)(p, q) = max{|trp(ε)− trq(ε)|,
max
a∈Σ

{δa(p), δa(q)}}

trp(ε): immediate payoff at p

Unfortunately, the state space is infinite . . .
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Behavioural Metrics for Probabilistic Automata

Aim: show that d(x , y) ≤ 1/2 in the example above.

Define finitary witness d̄ :

d̄(1 · x , 1 · y) = 1/2, d̄(1 · x ′, 1 · y) = 1/2 (1 in all other cases)

and show that d̄ is a pre-fixpoint up-to.

f (u(d̄))(1 · x , 1 · y) = max{|1/2 − 1/2|, u(d̄)(1/2 · x + 1/2 · x ′, y)}
= u(d̄)(1/2 · x + 1/2 · x ′, y)
≤ 1/2 · d̄(1 · x , 1 · y) + 1/2 · d̄(1 · x ′, 1 · y)
= 1/2 · 1/2 + 1/2 · 1/2 = 1/2 = d̄(1 · x , 1 · y) ✓?

The other case works similarly ⇒ µf = d ≤ d̄ .

Use up-to approach to show that this reasoning is sound!
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Behavioural Metrics for Probabilistic Automata

Instantiating the general approach:

T = D
FX = [0, 1]× XΣ

State space X = D(Q) (probability distributions on Q)

Coalgebra γ : X → FX :
γ : D(Q) → [0, 1]×D(Q)Σ (determinized probabilistic
automaton)

Algebra β : TX → X :
β : D(D(D)) → D(Q) (expectation/“flattening” nested
probability distributions; multiplication of the monad)

ζX : D([0, 1]× XΣ) → [0, 1]×D(X )Σ (“probabilistic
determinization”)
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Behavioural Metrics for Probabilistic Automata

Lifting the functors F ,T : Set → Set to [0, 1]-Graph:
Let d : X × X → [0, 1].

FX = [0, 1]× XΣ:

F (d)((a, x), (b, y)) = max{dΣ(a, b), d(x , y)}

(where dΣ is a fixed metric on Σ).

T = D:

T (d) is the Kantorovich distance on probability distributions
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Behavioural Metrics for Probabilistic Automata

f = γ∗ ◦ F : behavioural distance function on the determinized
probabilistic transition system (F : Kantorovich lifting)

u = Σβ ◦ T : contextual closure for barycentric algebras

u(d)(r1 ·p1+r2 ·p2, r1 ·q1+r2 ·q2) ≤ r1 ·d(p1, q1)+r2 ·d(p2, q2)

See also work on quantitative algebraic reasoning
[Mardare,Panangaden,Plotkin ’16]

We proved some simple conditions ensuring that the distributive
law can be lifted (for F polynomial and T Kantorovich lifting) (plus
additional results on Galois connections and compositionality):
[D’Angelo,Gurke,Kirss,König,Najafi,Różowski,Wild, 2024]
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