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Behavioural Equivalences

In the analysis of state-based systems, behavioural equivalences
(bisimilarity, trace equivalence, ...) relate states with the same
behaviour.

@ Comparing a system with its specification

@ Minimizing the state space
@ Analysis of model transformations

o Verification of cryptographic protocols (are two protocols
equivalent from the point of view of an external observer,
a.k.a. the attacker?)




Behavioural Equivalences

This talk: bisimilarity (and generalizations thereof . ..)

Let L be a set of labels and let X be a set of states with transition
relation — C X x L x X (written x 2 x').

A symmetric relation R C X x X is a bisimulation if for all pairs
(x,y) € R and all states x’ with x > x/, there exists a state y’
with y 3 y" and (¥, y’) € R.

Two states x, y are bisimilar whenever there exists a bisimulation
R with (x,y) € R (written x ~ y).




Behavioural Equivalences

Two tokens on states x, y — Player | (the attacker) chooses a token
and makes a move — Player Il (the defender) has to find an answer
with the other token — If no answer is possible, Player | wins

Two states are equivalent if and only if there is no winning
strategy for Player I.
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Finding a quantitative notion of behavioural equivalence ...

@ Do not insist on the exact same behaviour.
@ Measure the behavioural distance between two states.

@ Make statements such as “the behaviour of two states differs
only by €”.

~» behavioural metrics



Behavioural Metrics

Let X be a set. A pseudo-metric is a function d: X x X — [0, 1]
where for all x,y,z € X:

@ d(x,x) =0 (identity) (metric if (d(x,y) =0=x =y))

Q@ d(x,y) = d(y,x) (symmetry)

@ d(x,z) < d(x,y)+ d(y,z) (triangle inequality)
A (pseudo-)metric space is a pair (X, d) where X is a set and d is
a (pseudo-)metric on X.
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A non-expansive function f: X — Y between two (pseudo-)metric
spaces (X, dx), (Y, dy) satisfies for x,y € X

dx(x,y) > dy(f(x),f(y))

Note: the theory can be generalized to quantales (reversing the
order).



Metric Transition Systems

Let (M, d,) be a metric space. A metric transition system is a tuple
(X, 7,[]), where X is a set of states, 7 C X x X is a transition
relation and every state x is assigned an element [x] € M.

y
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Metric space X = [0, 1] with Euclidean metric.




Metric Transition Systems

Lifting a metric space (X, d) to (PsinX,d’): for X1, Xo C X:

d" (X1, Xo) = max{ )r(negéynen)rg d(x,y), rréa)? rrenn d(x,y) }

@ For each element x (in X, X3) take the closest element y in
the other set and measure the distance d(x, y)

@ Take the maximum of all such distances.




Metric Transition Systems
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Metric Transition Systems

Compute the smallest fixed-point of

d(x,y) = max{ d,([x], [y]), d"(7(x),7())}

d(2,5) =01 d(3,6)=03

d(2,6) = 0.6




Metric Transition Systems

Compute the smallest fixed-point of

d(x,y) = max{ d,([x], [y]), d"(7(x),7())}

d(x,y) = max{0,0.3} = 0.3
N y

d(2,5) =01 d(3,6)=03

d(2,6) = 0.6




Probabilistic Transition Systems

A probabilistic transition system is a tuple (X, T, p.), where X is a
set of states, T C X is the set of terminal states and every state
x ¢ T is assigned a probability distribution p,: X — [0, 1].

Studied by Larsen/Skou [Larsen and Skou, 1989], van
Breugel /Worrell [van Breugel and Worrell, 2005] (again simplified)



Probabilistic Transition Systems

Terminal state: 4

What is the distance between states 1 and 2?7 ~» distance ¢
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Compute the smallest fixed-point of

1 ifxeT,y¢Torx¢T,yeT
d(x,y)=4¢ 0 if x,yeT
dP(pX,py) otherwise

What does it mean to compute the distance between two
probability distributions p,, p, on a metric space?
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N
A

distances between states
probabilities of states

N —-— () —>= O

Interpret py as supply and p, as
demand. Transporting a unit
along a distance d costs d.

What is the minimal possible
cost for transporting supply to
demand?

@ transport % from A to B:

1 121
cost "5 = 2
° transpo rt % from A to C:
121
cost1l-5 =3
Overall cost: 2 (= distance

d”(px, py))
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Alternative: you have a logistics firm and handle transportation.
You do this by setting a price (per unit) for locations A, B, C
(pra.prg, pre). You buy and sell for this price at every location.
Your prices have to satisfy: prg — pra < d(A, B) (otherwise you
do not get the contract).

1 0 0 You want to maximize your
Px T 1 T 1 T profit. Which prices do you set?
A 2 B —2—/ C ~ pra =0, PfB:%:Pfczl
P i Ly o youger: 13 +1-5=3
1 L
2 2

@ youpay: 0-1=0

. Profit: 3
distances between states 4

probabilities of states
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Duality in transportation theory (Kantorovich-Rubinstein duality)

The following values coincide for a metric d: X x X — [0, 1] and
two probability distributions p,q: X — [0, 1]:

The minimum of >°,  P(x,y) - d(x,y)

for all probability distributions P: X x X — [0,1] (couplings,
indicating transport from x to y), such that > .y P(x,y) = p(x),
> wex P(x,y) = q(y) (marginal distributions are p, q)

v

The maximum of | ¥y.cx F(x) - P(x) — Tyex F(x) - 4(x)

for all nonexpansive functions : X — [0, 1]




Generalization of Metric Transition Systems

@ How can we model other types of transition systems (with
different branching types)?

@ How to set up the fixed-point equation in the general case?

@ Are there generic (and efficient) methods to compute metrics?

~» use coalgebra, a general categorical theory of behavioural
equivalences, to answer these questions.

Coalgebra offers a toolbox from which transition systems with
different branching types can be constructed and analyzed.
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Typical examples of Set-endofunctors used for coalgebras
o (finite) powerset functor Pg,X = {Y | Y C X, Y finite}
@ probability distribution functor
DX ={p: X = [0,1] | Xoyex p(x) = 1}
@ product functor FX = A x X (for a fixed set X)

e coproduct functor (disjoint union) FX = X + B (for a fixed
set B)

@ combinations of these functors

The functor defines the branching type of the transition system:
powerset functor ~» non-determinism

probability distribution functor ~» probabilistic branching
product functor ~» labelling

coproduct functor ~» termination, exceptions, failure
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Coalgebras

Transition systems are now called coalgebras:

Let F be a given functor. A coalgebra is a function v: X — FX
(where X is the state set).

v: X = M X PgnX

where M is a fixed metric space.

v: X —>DX+1

where 1 is a singleton set (1 = {4/}), representing termination.
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Our (fibrational) approach: [Bonchi et al., 2023]
o Consider a Set-coalgebra v: X — FX.

o Lift functor on F: Set — Set to a functor on
F: PMet — PMet (transform metric on X to metric on FX)

@ Obtain the behavioural metric on X as the least fixpoint of
the following map f:

PMety — > PMetry — > PMetx
v

f

where PMety is the set of pseudo-metrics on X (“fibre”
above X) and we use reindexing:

Y (d)=do(yx7)



Coalgebras and Behavioural Metrics

Needed: general methods for lifting a functor F to metric spaces

~» Wasserstein lifting, Kantorovich lifting

Evaluation functions and predicate liftings

We need a parameter: an evaluation function (algebra)
ev: F[0,1] — [0, 1]

Every evaluation function induces a real-valued predicate lifting:

(p: X = [0,1]) — (evo Fp: FX —[0,1])

Notes:
@ this can be extended to sets of evaluation maps.
o for the Wasserstein lifting, we have to put some requirements
on the evaluation map.
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Let d: X x X — [0,1] be a pseudo-metric and t1, t» € FX:

d*F(t, 1) = inf{ev(Fd(t)) | t € F(X x X), Fmi(t) = t;}

F(x x X) 2 e px 4

\_/

evoFd

[0,1]

@ View d as a real-valued predicate and lift it.

e For each pair (t1, t2) € FX x FX take a coupling in F(X x X)
that gives the optimal (least) value (direct image).



Coalgebras and Behavioural Metrics

Kantorovich lifting (aka codensity lifting [Katsumata,Sato,'15])
Let d: X x X — [0,1] be a pseudo-metric and t;, tp € FX:

d" (11, t2) = sup{de(ev(Ff(t1)), ev(Ff(t2))) |
f: (X,d)— ([0,1], de) non-expansive}

where de(x,y) = |x — y| for x,y € [0,1].

Given a pseudo-metric d:
@ Take all non-expansive maps f: (X, d) — ([0,1], de) (right
adjoint).
@ Take the predicate lifting for each such map.

@ Generate a pseudo-metric from the predicate liftings obtained
in this way (least pseudo-metric that makes all predicate
liftings non-expansive) (left adjoint).



Coalgebras and Behavioural Metrics

Results (Functor Lifting)

o d'f, d*F are both pseudo-metrics (for the Wasserstein lifting
we need some constraints on the evaluation function and weak
pullback preservation)

o df < aif
There are cases where d'F < d+f  ie., the
Kantorovich-Rubinstein duality does not necessarily hold (e.g.
for FX = X x X).

@ Non-expansive functions and isometries (distance-preserving
functions) are preserved by lifting.

@ The Wasserstein lifting preserves metrics (if the infimum is
always a minimum).




Coalgebras and Behavioural Metrics

Several standard metrics can be recovered by lifting. In each of
these cases the Kantorovich-Rubinstein duality holds.

functor | evaluation fct. resulting metric
Ptin ev(R C [0,1]) = max R | Hausdorff
D ev(p: [0,1] — [0,1])

=D xefo1] X - P(x) | Kantorovich
X+Y |ev(xel0,1]) =x distance on disjoint union
X xY | ev(x,y) = max{x,y} maximum of distances
XxXY |evix,y)=x+y sum of distances

Last three cases: bifunctor lifting or use of multiple evaluation
maps



Compositionality

Is functor lifting compositional? )

Assume that F(X,d) = (FX,d') (Kantorovich) or
F(X,d) = (FX,d"f) (Wasserstein)

When does FG = F G hold?

@ Wasserstein:
o F G < FG always holds (if evaluation maps are composed)
e Equality for so-called canonical liftings

@ Kantorovich:
o FG < F G always holds (if evaluation maps are composed)
e Equality if F polynomial and chosen evaluation maps

Useful for defining up-to techniques that help to simplify
(co)inductive proofs . ..
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Let f: L — L be a monotone function on a complete lattice. By
Knaster-Tarski this function has a least fixpoint uf (that coincides
with the least pre-fixpoint) and a greatest fixpoint vf (that
coincides with the greatest post-fixpoint).

Idea: extend the usual proof rule for pre-fixpoints to a proof rule
using an up-to function u.

f(d)<d f(u(d)) <d
uf <d uf <d




Bialgebras: Combining Algebras and Coalgebras

Add an algebraic structure that interacts “nicely” with the
coalgebraic structure:

Consider two functors F, T: Set — Set and a distributive law for
amonad (: TF = FT.

A bialgebra for ¢ consists of a T-algebra 5: TX — X and an
F-coalgebra v: X — FX so that the diagram commutes.

X 2o x 2o Fx

i s

TFX — - FTX

Such bialgebras can be obtained by determinizing coalgebras of the
form Y — FTY. In thiscase X = TY.



Up-To Techniques

Given a bialgebra f: TX — X, v: X — FX (with distr. law ():
o Lift the functors F, T to F, T: PMet — PMet

@ This gives us an up-to function u on the fibre above PMety:

T g
PMety —— PMetx —— PMety
\—/
where ¥ 5(d)(x1, x2) = infg(,)—x d(t1, t2) (direct image).

u is typically some form of metric congruence closure wrt. the
operators of the algebra.
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@ Whenever { can be extended to a natural transformation
¢: TF= FT (ie., the components of ¢ are non-expansive
maps), the following proof rule holds:
f(u(d)) <d
uf <d

Up-to functions help to find witnesses (pre-fixed-points up-to),
establishing upper bounds for least fixpoints.

Typically it is easier to show f(u(d)) < d rather than f(d) < d.



Behavioural Metrics for Probabilistic Automata

" 12 Q — [0,1] x D(Q)*

a@l/z 1 a a@l trx)((w) ” 1;2 | 374 | 73/‘; | li?fe |
SnOP I y N2l || v

For a state x € Q let tr: ¥* — [0, 1] assign to each word w € X*
the expected payoff for this word when read from x.

Directed behavioural distance between states:
d(x,y) = sup (try(w) © trx(w))
wexr*

In this case: d(x,y) = /2.

This can be extended to probability distributions on states.



Behavioural Metrics for Probabilistic Automata

Probabilistic determinization:

() O |

Behavioral distance can be characterized as least fixpoint of f:

f:[ojl]D(Q)X’D(Q) N [0,1]D(Q)><D(Q)

f(d)(p,q) = max{|trp(e) — trq(e)l,
Teazx{éa(p)aéa(q)}}

trp(e): immediate payoff at p
Unfortunately, the state space is infinite ...



Behavioural Metrics for Probabilistic Automata

Aim: show that d(x,y) < 1/2 in the example above.

Define finitary witness d:
o d(1-x,1-y)=1/2,d(1-x,1-y)=1/2(1in all other cases)

and show that d is a pre-fixpoint up-to.

Fu(d))(1-x,1-y) = max{[/2 — 12|, u(d)(Y2- x + Y2 X, y)}
= u(d)(1/2-x+Y2-X.y)
< 1/2'd_(].-X,]_-y)—i—l/Z'J(].-X/,]_-y)
:1/2.1/2+1/2.1/2:1/225(1.)(,1.},) v7?
The other case works similarly = uf = d < d.

Use up-to approach to show that this reasoning is sound!



Behavioural Metrics for Probabilistic Automata

Instantiating the general approach:

e T=D
o FX =[0,1] x X*
@ State space X = D(Q) (probability distributions on Q)

o Coalgebra v: X — FX:
v: D(Q) — [0,1] x D(Q)* (determinized probabilistic
automaton)
@ Algebra g: TX — X:
B: D(D(D)) — D(Q) (expectation/ “flattening” nested
probability distributions; multiplication of the monad)
o (x: D([0,1] x X*) — [0,1] x D(X)* (“probabilistic
determinization™)
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Lifting the functors F, T: Set — Set to [0, 1]-Graph:
Let d: X x X — [0,1].
o FX =[0,1] x X=:

F(d)((a.x), (b,y)) = max{dz(a, b), d(x,y)}
(where dy is a fixed metric on X).
o T ="D:
T(d) is the Kantorovich distance on probability distributions



Behavioural Metrics for Probabilistic Automata

o f =~* o F: behavioural distance function on the determinized
probabilistic transition system (F: Kantorovich lifting)

@ u=13%go T: contextual closure for barycentric algebras

u(d)(r-pr+r-pn-qit+r-q) <n-dlpi,q)+r-d(p2, q)

See also work on quantitative algebraic reasoning
[Mardare,Panangaden,Plotkin "16]

We proved some simple conditions ensuring that the distributive
law can be lifted (for F polynomial and T Kantorovich lifting) (plus
additional results on Galois connections and compositionality):
[D'Angelo,Gurke,Kirss,Konig,Najafi,Rézowski, Wild, 2024]
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