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Motivation

1 Find an interesting problem in physics.
2 Formalize it categorically.
3 Give a presentation in terms of generators and equations.

Class of mechanical circuits
(physical semantics)33

ss
kk

++
Category of relations

(Categorical semantics)
oo // string diagrams+equations

(graphical syntax)

I like creating graphical languages, physics gives me examples!
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Outline

1 Review linear algebra using string diagrams.

2 Sketch the basic idea of Hamiltonian mechanics using
symplectic geometry.

3 Combining the previous two points, we give graphical
languages for various classes of mechanical processes.
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Affine matrices

Definition
The symmetric monoidal category AffMatk has:

Objects: natural numbers;
Morphisms: (T ∈ km×n, a ∈ km) : n → m;
Identity: 1n := (In, 0) : n → n;

Composition:
(T , a) : n → m, (S,b) : m → k

(S,b) ◦ (T ,a) := (S ◦ T ,S ◦ a + b) : n → ℓ

Monoidal product:
(T , a) : n → m, (S,b) : ℓ → r

(T , a)⊗ (S,b) :=
([

T 0
0 S

]
,

[
a
b

])
: n + m → ℓ+ r

Monoidal unit: I := 0.
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Generators for affine matrices

AffMatk is generated by, for all a ∈ k :
r z

=
([1

1

]
, 0
)
: 1 → 2;

r z
= (0,0) : 1 → 0;

r z
= (
[
1 1

]
, 0) : 2 → 1;

r z
= (0,0) : 0 → 1;

r
a

z
= (a,0) : 1 → 1;

r
1

z
= (0,1) : 0 → 1;
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Equations for affine matrices (folklore)

Modulo the equations, for all a, b ∈ k :

= = = =

= = = =

=

a
a a= a

aa =a= a =

a
b a + b= 0= 1 =a =b ab

= =1 1
1 1
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Affine relations

Definition
The symmetric monoidal category AffRelk has:

Objects: natural numbers;
Morphisms: n → m are affine subspaces
L + a = {v − a | ∀v ∈ L} ⊆ kn ⊕ km or empty ∅ ⊆ kn ⊕ km;
Identity: 1n = {(v,v) | ∀v ∈ kn};
Composition:

R : n → m, S : m → ℓ

S ◦ R := {(v,w) | ∃u ∈ km : (v,u) ∈ R, (u,w) ∈ S} : n → ℓ
;

Monoidal product: direct sum;
Monoidal unit: 0.
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From affine transformations to affine relations

The graph of an affine transformation is a symmetric monoidal
functor Gr∗ : AffMatk ↣ AffRelk

(A : n → m) 7−→ ({(v,A ◦ v) | ∀v ∈ kn} : n → m)

Similarly, the cograph of an affine transformation is a symmetric
monoidal functor Gr∗ : AffMatop

k ↣ AffRelk

(A : n → m) 7−→ ({(A ◦ v, v) | ∀v ∈ kn} : m → n)
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Presentation for affine relations (Bonchi et al. 2019)

AffRelk is generated by the the generators and equations of
Gr∗(AffMatk ) and Gr∗(AffMatk ) in addition to the equations:

= = = =

= = = =

= =a a a a for all a ∈ k : a ̸= 0

-1 =
-1=

=1 1

White/grey “spiders” denote connected components of
white/grey Frobenius algebras:

... ... and ... ... ... ...
a

:=
a 1
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How do we connect this to physics?

1 We want to refine AffMatR so that morphisms are
the equations of motion of particles.

2 We want to refine AffRelR so that morphisms are
the affinely constrained flows of particles.

3 Then we will give a more refined graphical language...
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Phase space

In Hamiltonian mechanics, the position space is represented
by a manifold M.

The phase space is the configuration space of position and
momentum; represented by the cotangent bundle T ∗M.

We interpret a particle as a point (q, p) ∈ T ∗M.

Example

For translational momentum: T ∗Rn ∼= Rn × (Rn)∗ ∼= R2n
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Visualizing angular momentum

For this talk, we care about position space M = Rn, but the
circle is useful to build intuition:

Example

For angular momentum: T ∗S1 ∼= S1 × R

θ

p dθ

7−→ (0, 0)

(
θ,p dθ

)

(θ, 0)
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Generalized positions and momenta
(Baez and Fong 2018)

In different mechanical settings, there are different notions of
position and momentum:

Classical

mechanics q dq/dt p dp/dt

Translation position velocity momentum force

Rotational angle angular velocity angular momentum torque

Electronic charge current “flux linkage” voltage

Hydraulic volume flow “pressure momentum” pressure

Thermal entropy “entropy flow” “temperature momentum” temperature
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Symplectic structure
In general T ∗M is a symplectic manifold. More specifically,
T ∗Rn ∼= R2n is a symplectic R-vector space:

Definition
A symplectic k -vector space is a pair (V , ωV ) where:

V is a k -vector space;
ωV : V × V → k is a non-degenerate, alternating bilinear
form.

Similarly, a k -linear symplectomorphism (V , ωV ) → (W , ωW )
is a k -linear isomorphism T : V → W such that for all a,b ∈ V :

ωW (T ◦ a,T ◦ b) = ωV (a,b)

Lemma (Darboux)

Every finite-dimensional symplectic k-vector space (V , ωV ) is
symplectomorphic to (k2n, ωn) where:

ωn((q, p), (q′, p′)) := q⊤ ◦ p′ − p⊤ ◦ q′
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Hamiltonian mechanics

Symplectic geometry is the mathematics of Hamiltonian
mechanics.

An (autonomous) Hamiltonian is a smooth function
H : T ∗M → R assigning energy values to particles.
This induces a gradient dH : TT ∗M → R.
There is a vector bundle isomorphism Φ : TT ∗M → T ∗T ∗M
given by Φ(v) := ω(v ,−).
These define a Hamiltonian vector field
XH := Φ−1(dH) : T ∗M → TT ∗M.

The 1-step Hamiltonian evolution exp(XH) : T ∗M → T ∗M
is a symplectomorphism!
⇒ symplectomorphisms generalize equations of motion.
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Quadratic Hamiltonians
For our example of M = Rn and T ∗(Rn) ∼= R2n:

Lemma

Given a quadratic Hamiltonian H : R2n → R so that
v 7→ 1

2vT◦ A ◦ v + b⊤◦ v + c for A ∈ Sym2n(R),b ∈ R2n, c ∈ R
the Hamiltonian evolution is an affine symplectomorphism:(
exp(Ωn◦A),

(∫ 1

0
exp((1-s)Ωn◦A)ds

)
◦(Ωn◦b)

)
: (R2n, ωn)→(R2n, ωn)

Where Ωn :=

[
0 In
−In 0

]
so that ωn(v,w) = v⊤ ◦ Ωn ◦ w.

Example

Given the quadratic Hamiltonian R2 → R such that
(q,p) 7→ θ

2

(
(q − a)2 + (p − b)2)

The Hamiltonian evolution is the affine symplectomorphism
(R2, ω1) → (R2, ω1) which rotates about (a,b) by θ.
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Affine Lagrangian subspaces

Definition
Given a linear subspace S ⊂ (V , ωV ) of a symplectic vector
space, the symplectic complement is the linear subspace:

SωV := {v ∈ V | ∀s ∈ S : ωV (v, s) = 0}

An affine Lagrangian subspace S ⊂ (V , ωV ) is an affine
subspace S + a ⊆ V such that SωV = S.

Affine Lagrangian subspaces generalize affine
symplectomorphisms, and thus, the equations of motion given
by quadratic Hamiltonians:

Lemma
Given an affine symplectomorphism S : (V , ωV ) → (W , ωW ),
its graph is an affine Lagrangian subspace

Gr∗(S) ⊆ (V ⊕ W ,−ωV ⊕ ωW )
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Affine Lagrangian relations

Definition (Weinstein)
The symmetric monoidal category AffLagRelk has:

Objects: Natural numbers;
Morphisms: n → m given by affine Lagrangian subspaces
of (k2n ⊕ k2m,−ωn ⊕ ωm) or the empty set;
Composition, identity and monoidal structure: same as
in AffRelk

Affine symplectomorphisms are generalized equations of
motion.

Affine Lagrangian relations are nondeterministic generalizations
of equations of motion: morphisms n → m are affine
constraints dictating how n particles can flow into m particles.
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Generators (Comfort and Kissinger, 2021)
Affine Lagrangian relations is generated by (a,b)-labelled
spiders, for all a, b ∈ k :

s

... ...
a, b

{
:=

......

......
b

⊗

⊗

⊗

⊗
......

a

s

... ...
a, b

{
:=

......

......
b

⊗

⊗

⊗

⊗
... ...

a

So that in particular:
s

a, b
{
= Gr∗

([
1 0
b 1

]
,

[
0
a

])
: 1 → 1

s
a, b

{
= Gr∗

([
1 b
0 1

]
,

[
a
0

])
: 1 → 1
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Equations (Booth, Carette, Comfort, 2024)
For all a, b, c,d , z ∈ k such that z ̸= 0 and permutations τ, σ:

= =

z

z

z

z
=... ... ......

ba -ab=

a

b
a + b=

=

== ==

=
......

......
...

...

...

...

=

... ... ...στ... ... ...=

... ... ...στ... ... ...=

=
......

......
...

...

...

...

z :=
0 :=

:=

... ... ... ...:= ... ... ... ...:=

1

1, 0 1, 0

a, b a, b

a, b a, b

a, b a, b

a, b

z-1a, z-2b

c, d

a, 0

a, b

c, d

a+c,
b+d

a, b

c, d

a+c,
b+d

a, b

0, z 0, z

0, -1/z

0, 0 0, 0

Cole Comfort Syntax and semantics for mechanical processes



Example: Electrical circuits

q, 0 p, 0 represents a particle (q, p) ∈ R2.

Recall q is charge, dq/dt is current and dp/dq is voltage.

... ... : n → m represents an (idealized) junctions of wires.

“Voltages across wires are equal; charge is conserved.”

Ex: there are various possible ways particles can flow:

= = =
q, 0 p, 0

q, 0 p, 0

q, 0 0, 0

q, 0 0, 0

q, 0 p, 0

q, 0 p/2, 0

q, 0 p/2, 0
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Example: Electrical circuits

0, r
: 1→1 is a symplectomorphism with Hamiltonian

(q, p) 7→ r
2q2.

This is interpreted as a non-dissipative (idealized) resistor with
resistance r ∈ R+.

We can compose resistors:

in sequence: =0, r 0, s 0, r + s

in parallel: = = =
0, r

0, s

0, 1/r

0, 1/s

0, 1/r+1/s 0, 1
1/r+1/s
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Example: Stabilizer quantum circuits

By replacing R with Fp for odd prime p, there is an embedding:
AffLagRelFp

↪→ (FHilb,⊗,C)/ ∼ modulo nonzero scalars.
On objects: n 7→ C[Fn

p] := SpanC{|v⟩ | ∀v ∈ Fn
p};

States: 0 → n are sent to “stabilizer states;”
Morphisms n → m are sent to “stabilizer circuits;”
Isomorphisms n → m are sent to “Clifford operators.”

This is compatible with the classical picture of Hamiltonian
mechanics:

quadratic forms
F2n

p → Fp55
uu

kk
++

Clifford operators
C[Fn

p] → C[Fn
p]
oo // Affine Symplectomorphisms

(F2n
p , ωn) → (F2n

p , ωn)

Stabilizer quantum circuits are extremely important in
quantum error correction.
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Gaussian mechanics (Booth, Carette, Comfort, 2024)
In statistical mechanics, or continuous-variable quantum
mechanics, particles are:

probability distributions
The ground state is interpreted as the standard Gaussian
distribution in phase space T ∗(R) ∼= R2:

position

2
1

0
1

2

mom
en

tum
2

1
0

1
2
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y 
de
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ity

0.00
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0.08
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0.14
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Gaussian mechanics (Booth, Carette, Comfort, 2024)

Semantically, Gaussian mechanics can be interpreted in the
subcategory AffLagRelC, imposing that ∀v ∈ L+ a, iω(v,v) ≥ 0.

This is generated by the two spiders of AffLagRelC where the
labels are restricted to {(a,b + ci) ∈ C2 | a, b, c ∈ R, c ≥ 0 }.

Syntactically, this is represented by the equational theory of
AffLagRelR, in addition to a generator for the ground state
which is invariant under rotations:

=

cos(θ)

- sin(θ)

sin(θ)

cos(θ)

-1
-1

-1
-1

= =
0, - tan(θ/2) 0, - tan(θ/2)

0, sin(θ)
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Adding a time delay (Comfort, de Felice, forthcoming)
We can model time-dependent mechanical systems by a
time-delay generator δ to the syntax of AffLagRelk .
By working with affine relations over the rational functions

k(δ) :=
{

f (δ)
g(δ)

∣∣∣∣ ∀f (δ),g(δ) ∈ k [δ] : g(δ) ̸= 0
}

We can interpret the delay as multiplication by δ:
r

δ

z
:=

{([
q(δ)
p(δ)

]
,

[
q(δ) · δ
p(δ) · δ

]) ∣∣∣∣ ∀q(δ), p(δ) ∈ k(δ)
}

δ + AffLagRelk generates shifted affine Lagrangian
relations, where the symplectic form is twisted with a
conjugation:

ω:n(f (δ),g(δ)) := ωn(f (δ),g(1/δ))
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Axioms of the delayed stabiliser ZX-calculus
For all permutations σ and τ , a(δ), c(δ),w(δ) ∈ k(δ), b(δ), d(δ), z(δ) ∈ k(δ + 1/δ),
f (δ), g(δ) ∈ k [δ], and f0, g0 ∈ k such that f (0) = g(0) = 0, g(δ) + g(1/δ) + g0 ̸= 0,
f0 ̸= 0, w(δ) ̸= 0, and z(δ) ̸= 0.

= =

w(δ)

w(δ)

w(δ)

w(δ)
=... ... ......

b(δ)a(δ) -a(δ)b(δ)=

a(δ)

b(δ)
a(δ) + b(δ)=

=

==

==

=

......

......
...

...

...

...

=

= =

... ... ...στ... ... ...= ... ... ...στ... ... ...=

=

......

......
...

...

...

...

z(δ) ==

......

g(δ)
f0

f (δ)
g(δ)+g(1/δ)+g0

...... := ......

g(δ)
f0

f (δ)
g(δ)+g(1/δ)+g0

...... :=

...... := ......

f (δ)
g(δ)+g(1/δ)+g0

...... := ......

f (δ)
g(δ)+g(1/δ)+g0

b(δ) := b(δ)=: b(δ)

a(δ) a(δ):=0 =

w(δ) = 1/w(1/δ)

... ... ... ...:=

... ... ... ...:=

1:= = =

1, 0 1, 0

a(δ), b(δ) a(δ), b(δ) a(δ), b(δ) a(δ), b(δ)

a(δ), b(δ) a(δ), b(δ)

a(δ), b(δ)

a(δ)/w(δ),
1/w(1/δ)b(δ)/w(δ)

c(δ), d(δ)

a(δ), 0

a(δ), b(δ)

c(δ), d(δ)

a(δ)+c(δ),
b(δ)+d(δ)

a(δ), b(δ)

c(δ), d(δ)

a(δ)+c(δ),
b(δ)+d(δ)

a(δ), b(δ)

0, -1/z(δ) 0, z(δ)0, z(δ)
a(δ), z(δ) a(δ)

z(δ) ,
1

z(δ)

0, g0
f0

a(δ), f (δ)+f (1/δ)+f0
g(δ)+g(1/δ)+g0

a(δ), 0

0, g0
f0

a(δ), f (δ)+f (1/δ)+f0
g(δ)+g(1/δ)+g0

a(δ), 0

a(δ), f (δ)+f (1/δ)
g(δ)+g(1/δ)+g0

a(δ), 0

a(δ), f (δ)+f (1/δ)
g(δ)+g(1/δ)+g0

a(δ), 0

0, 0

0, 0
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Cool pictures involved

δ

δ6
=

δ-6 + δ-1 + δ + δ6

⇝
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Thank you

Questions?
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