Some applications of polynomial functors

David I. Spivak

TOPOS

INSTITUTE

University of Pisa, Computer Science Department
2022 April 06

Outline

Introduction
= Why Poly?
m Today's talk

0/20

All roads lead to Rome; what did Rome have??

The Polynomial Functors workshops were a confluence of researchers.

Marcelo Fiore, Steve Awodey, Thorsten Altenkirsch: type theory
m Fred Norvall, Exequiel Rivas, Paul Taylor: programming languages
m David Spivak: database theory and dynamical systems
m Eric Finster, PL Curien, Kristina Sojakova, David Gepner: co-caty's
m Todd Trimble, André Joyal, Tarmo Uustalu: new theory about Poly
m Helle Hvid Hansen, Sean Moss, Bart Jacobs: Logic
m Brandon Shapiro, Michael Batanin: polynomial monads for formal CT
m And many more... Ross Street, etc., etc.
What do these fields have in common?

m What are polynomial functors about?
m What makes polynomial functors a center for this kind of convergence?

1/20

Why Poly?

Why Poly?

“Why" does Poly have such centrality within category theory?

m | don't know why it applies to so many things.

m But

| do know that categorically, it is incredibly rich and well-behaved:

Coproducts and products that agree with usual polynomial arithmetic;

All limits and colimits;

At least three orthogonal factorization systems;

A symmetric monoidal structure ® distributing over +;

A cartesian closure g° and monoidal closure [p, q] for ®;

Another nonsymmetric monoidal structure < that's duoidal with ®;

A left <-coclosure [:} meaning Poly(p, g <r) 2 Poly([/], q);

An indexed right <-coclosure (Myers?), i.e. Poly(p, q<r) & > Poly(p/f\q, r);
f: p(1)—q(1)

An indexed right ®-coclosure (Niu?), i.e. Poly(p, q® r) = > Poly(p s q,r);

i . . f: p(1)—q(1)
At least eight monoidal structures in total;

<monoids generalize X-free operads;
<-comonoids are exactly categories; bicomodules are data migrations. This is Cat*.

“A reference for categ'ical structures on Poly”, arXiv: 2202.00534

2/20

Why Poly?

Getting to know Poly: the lens pattern

We'll begin with the subject of a lot of recent ACT attention: lenses.
Definition

There is a category Lens whose objects are pairs of sets

Ob(Lens) := Ob(Set x Set), denoted [']

and for which a morphism [4"] — [£'] consists of a pair (f, ") where

;
A &)

C

3/20

Why Poly?

Understanding the lens pattern

There are many examples of the lens pattern: namely in

m functional programming, v/

m open dynamical systems, v’

m wiring diagrams, v’

m deep learning, no time today

E open games, no time today and
m databases. v’

We can understand Lens ([ﬁ/], [g/]) in terms of polynomial functors.

4/20

Polynomial functors

A functor p: Set — Set is polynomial if it is a coproduct of representables.

Taking all natural transformations as maps, we get a category Poly.
m | denote objects in it like this: p = 2% + 3y + 7.

m For example, p(0) =7, p(1) = 11, and p(2) = 51.

m Let’s call p a monomial if it is of the form p = AyA/, e.g. 5y

Theorem

There is an isomorphism of categories
Lens = I:)Olyl\/lonomial

where PolY pjonomial IS the full subcategory spanned by the monomials.

In other words, a Poly map Ay” — ByZ' is a Lens map (A —=1E]

Today’s talk

Today: introduce Poly in terms of its applications

Davide asked me to speak mainly about the applications of Poly.

m There are many, including to pure math.
m I'll focus on a few: programming, dynamical systems, databases.
m I'll introduce structures of Poly as we go.

6/20

Outline

Functional programming
m Polymorphic data types
m Deeper look at Poly
m Algebraic datatypes

6/20

Polymorphic data types and maps

In functional languages such as Haskell, you often see things like this:

data Fooy =Bar yyy | Baz y y | Qux | Quux
data Maybe y = Just y | Nothing

m These are polynomials: y3 + y2 +2 and y + 1 respectively.
m They're “polymorphic” in that
m they act on any Haskell type Y in place of the variable y, and
m foranymapf : Y1 -> Y2 there's a map Foo Y1 -> Foo Y2

What is a natural transformation Corge: Foo ~» Maybe?

m To each type constructor (Bar, Baz, Qux, Quux) in Foo ...

m ... it assigns a type constructor (Just or Nothing) in Maybe,...

® ... and a way to grab as many y's as Maybe needs from Foo's term.
There are 12=6+342+1 ways to do it. Three examples:
Corge (Bar a b c)=Just a; Corge (Baz a b)=Just a; Corge Qux=Nothing; Corge Quux=Nothing

Corge (Bar a b c)=Just b; Corge (Baz a b)=Just a; Corge Qux=Nothing; Corge Quux=Nothing
Corge (Bar a b c)=Nothing; Corge (Baz a b)=Just b; Corge Qux=Nothing; Corge Quux=Nothing

7/20

Deeper look at Poly

Deeper look at objects and morphisms in Poly

Let's slow down and understand Poly a little better.
m A representable functor Set — Set is one of the form
y" = Set(A, -)
for example y? takes any set Y to Y x Y.
m y' is isomorphic to the identity, and »° is constant 1.
m A polynomial functor is a coproduct of representables
p= Zyp[i]
icl
Note that / = p(1), so we write p = Ziep(_l) yPll.
Maps p — g are computed using Yoneda and univ. property of coproducts.

Poly(p, q) = Poly(> 4711, = y)

iep(1) Jj€aq(1)

=[] > Set(qli]. plil)

iep(1) jeq(1) 8/20

Unpacking in the Haskell case
That might be daunting, but it’s pretty easy when you get used to it.

m Let’s see another example of a natural transformation.
m Here are two polynomial datatypes, p :=y3 + y and q := 25> + 1.

data p y = pFoo y y y | pBar y
data q y = qFooyy | gBar y y | gBaz

m What's a natural transformation Corge: p ~» g7

This crazy formula Poly(p,) = [[;cp1) 2o jeqr) Set(qli], pli]) says:
m For each i € p(1), namely pFoo and pBar, we need to ...
m ... choose j € g(1), namely either qFoo, gBar, or qBaz and then ...
m ... for each variable there in g, choose one of the variables in p.
Corge : forally. py —>qy
Corge pFoo (a b ¢) = gBar (b a) -- Corge is one of
Corge pBar (a) gFoo (a a), -- 57 possible maps.

9/20

Algebraic datatypes

Another thing you see in Haskell is something like this:
List a = Nil | Cons a (List a)

For some type a, e.g. a = Int. What is going on here?
m This is called an algebraic data type.
m It looks like List a is being defined recursively, in terms of itself.
m But we can break it into two pieces: a functor and its fixed points.
ListF a y = Nil | Cons a y

This is the polynomial ps :== 14 Ay for some set A € Set. (ke my sets capitalized)
m Polynomial functors have initial algebras and final coalgebras.
m That is, there is an initial S € Set equipped with p(S) — S.
m And there is a final T € Set equipped with T — p(T).
m The initial algebra of py is carried by } A", classic lists.

m The terminal coalgebra of pa is carried by AN 4+ >\ A", streams.

10/20

Outline

Dynamical systems
m Wiring diagrams and interaction patterns

10/20

Various notions of dynamical system

Moving on, there are many reasonable definitions of dynamical system.
m Fix a monoid (T,0,+). Then a T-Dyn. Sys. is a T-action on S € Set.
m For example, an action R x S — S let's you evolve s by any t € R.
m We'll briefly return to this sort later, but it's not quite satisfactory.
m | want open dynamical systems, ones that can interact with others.

a{s7)

Let A, B be sets or spaces. Notions of (A, B)-dynamical systems include:

m System of ODEs, parameterized by A and reading out B's.
m Moore machine: a set S and functions r: S - Band u: Ax S — S.
m Mealy machine: a set S and a function f: Ax S — S x B.

11/20

Dynamical systems in terms of Poly

Let's discuss each of these (saving the monoid action for later).
m For any manifold M, let TM be its tangent bundle.
m At every point m € M, we have a tangent space T,,M.
m For example, if M =R” then TM 2 R” x R" and T,,M = R".
m Then an A-parameterized system of ODEs reading out B’s is a map:

p: Yy = By”
meM
Let’s think of M as the state space. Then
m for each m € M, we get a readout 1(m) and ...
m for each a € A, we get a tangent vector ©*(m,a) € T,,M.
(A, B)-Moore machines are easier.

m Aset S and functionsr: S — Band u: S x A— 57
m That's the same data a map of polynomials Sy° — By”.

m It's also the same as a By” coalgebra: S — BSA.
12/20

Mealy machines

The difference between Moore and Mealy machines involves instantaneity.
m An (A, B)-Moore machineis S — Band Ax S — S.
® An (A, B)-Mealy machineis AxS — Band AxS — S.
m In Mealy, the input A can immediately affect the output B.
® A Moore machine can be regarded as a Mealy machine (drop A).
It took me a long time to realize that the converse is also true.

m An (A, B)-Mealy machine is an (A, BA)-Moore machine.
m Indeed, that's S — BAand Ax S — S.
m A Mealy machine is a Moore machine that outputs functions.

The transformation isn't out of the blue: it comes from monoidal closure.

13/20

Monoidal closure of Poly

Poly has a monoidal closed structure (y, ®, [—, —]).
mlet p=>"c,m yPll and g = > icq(1) yaUl
m The Dirichlet product p ® g has monoidal unit y and is given by:
PR q = Z yp[flxq[i]
(i)ep(1)xq(1)
We'll use that on the next slide.

m It has an internal hom [p, q], given by

[p,q] = Z yZiGP(l) qleri]

@ p—q

That's a lot to take in, so let's try it for p := Ay® and q == y.
m First, a map ¢: Ay® — y is just a function A — B.
m Since p(1) = A and q[!] = 1, we have [Ay5,y] = BAy* = (By)~.
So an [AyB, y]-coalgebra S — (BS)” is an (A, B)-Mealy machine.

14/20

Wiring diagrams
Let’s depict monomials By” as boxes with A-inputs and B-outputs:
By” is depicted A —{ B

Here's a picture of a kind of interaction pattern called a wiring diagram:

It has two inner boxes and one outer box, and represents a map
¢: Cy*P ® DEFyBC — Ey"B
In other words the picture tells us about two functions:
C(DEF) — E and C(DEF)(AB) — (AD)(BC)

Wiring diagrams allow projection, splitting, and permuting variables.
15/20

Wiring diagrams and interaction patterns

More general interfaces

A polynomial p = Ziep(l) y”[i] can be understood as an interface that
m outputs “positions” i € p(1) and
inputs “directions” d € p[i] that can depend on its position.
So By” can output elements of B and input elements of A.
But y2 + y is like an eyeball: its positions are open and closed and...

]
]
]
® ... when it's open it receives a bit; when it's closed it receives no bits.

An clocked interaction pattern of interfaces p, ... px inside p’ is a map
P:pL@--Rpc—p
A wiring diagram is a very special case. For example, there is only one WD
2y° @ 3y° — 2°

but there are 20 % 1530 ~ 1037 clocked interaction patterns.

16/20

Wiring diagrams and interaction patterns

Composition in Poly: removing the clock

Composing polynomials is a monoidal operation <: Poly x Poly — Poly.
m | denote this functor by «, leaving o for composition of morphisms.
m It is straightforward, e.g. y?> < (y + 1) = % +2y + 1. The unit is y.
You can use this to make dynamical systems run faster.
m Any map Sy° — p induces Sy° — p*" for any n.
m Because there’s a certain semi-monad structure on Ay®, ...
B ...we can run interior boxes at n-times speed for any n > 1.

17/20

Outline

A Databases

17/20

Categorical databases

A database is a collection of tables whose columns can refer to other tables.
m One way to conceptualize this is as a category C, “the schema”...
m ... together with a functor (copresheaf) D: C — Set, “the keys"...
® ... and one of many possible ways to categorically handle “attributes”.
m This approach to databases has been implemented several times.

The two things one does with databases are: migrate and aggregate.

m Data migration means moving data from one schema to another.

m It includes querying: asking for all matches for a certain pattern.

m Aggregation means accumulating attribute values over a column...

B ... where we assume that the attribute has a comm. monoid structure.

All of this fits nicely into the Poly ecosystem.

18/20

Comonoids and bicomodules in Poly

By a theorem of Shulman, comonoids in (Poly, ¢, <) form an equipment.
By theorems of Ahman-Uustalu and Garner, it has relevant semantics.
Its objects are exactly categories, so | call it Cat?.

Its horizontal maps generalize both copresheaves and data migration.
The subcategory carried by linear polynomials is exactly Span.

It contains Gambino-Kock’s PolyFung, as a full sub equipment.

It's got local monoidal closed structures, and tons of other structure.

You can define not only data migration but also aggregation in this setting.
m To do so requires all the structures we've discussed so far.
m For example, it turns out that the operation of transposing a span...
® ... can be split up into two more primitive universal operations.

Finally, keeping an old promise...
m The vertical maps are in Cat? are called cofunctors.
m If 47 is a monoid, then a cofunctor Sy°> — y 7 is a T-action on S.

m Using cofree comonoids, dyn. systems are subsumed as “databases'l'g/m

Outline

H Conclusion
m Summary

19/20

Summary

The polynomial ecosystem is very rich.
m It's got an abundance of structure; that's difficult to over-state.

m | now know of eight different monoidal structures on Poly.
m How many structures are we still missing?

m Poly offers a single setting in which lots of ACT subjects live.
m Programming, dynam’l systems, databases, deep learning, games.
m But how do they come together? How should they interact?

There's ton’s to do; please join in the fun!

Thanks! Comments and questions welcome...

20/20

I
Adaptive interaction patterns

We want to remove the fixed nature of interaction patterns.
m That is, we want wiring pattern itself to change through time.
m We might call this “adapting”; we'll briefly consider “goals” on p. 22.

Given interfaces pi, ..., px and p/, we want a changing interaction pattern.

m Let p:=p; ® - ® pk and recall the internal hom
Pz Y yFe P,

p: p—p’
m Its positions are interaction patterns p: p1 @ -+ ® px — p'!
m And a direction at ¢ is “the data flowing on all the wires”.
m For example if p; = Biy™ then direction set is always By - - - B A'.
So a [p, p']-coalgebra is a Moore machine:
B it outputs interaction patterns and updates based on what's flowing.
m Define a category-enriched operad Org with objects Ob(Poly) and...
m ... hom-caty's [p1 ® - - - ® px, p']-Coalg, or [¢cp, ® - - - @ ¢p, , p']-Coalg.

m This is the subject of a paper called Learners’ languages. 20,20

Deep learning

Deep learning falls out

Artificial neural networks are adaptive organizations in the above sense.
m Let t .= py ¥ be the tangent bundle; note t®" = 3" ..y E".
m A [t®" t]-coalgebra is just a Moore machine with a fancy interface.
m Let P := R think of (b, wy,...,w,) € P as bias & weights.
m Then an artificial neuron is a coalgebra P — [t®" t] < P.
m For every parameter, we get both a map R" — R and ...
® ... a way to convert any tangent vector on R (loss)...
m ... to a tangent vector on R” (back propagation) ...
m ... as well as a new parameter (by gradient descent).
m The composite of coalgebras in Org runs the DNN as usual.
m Weight tying (as in convolution, recurrent, etc.) is as in Backprop AF.

20/20

	Introduction
	Why ?
	Today's talk

	Functional programming
	Polymorphic data types
	Deeper look at
	Algebraic datatypes

	Dynamical systems
	Wiring diagrams and interaction patterns

	Databases
	Conclusion
	Summary

	Appendix
	Deep learning

