
Some applications of polynomial functors

David I. Spivak

April 6, 2022

University of Pisa, Computer Science Department
2022 April 06

Introduction

Outline

1 Introduction
Why Poly?
Today’s talk

2 Functional programming

3 Dynamical systems

4 Databases

5 Conclusion

0 / 20

Introduction Why Poly?

All roads lead to Rome; what did Rome have??

The Polynomial Functors workshops were a confluence of researchers.

Marcelo Fiore, Steve Awodey, Thorsten Altenkirsch: type theory

Fred Norvall, Exequiel Rivas, Paul Taylor: programming languages

David Spivak: database theory and dynamical systems

Eric Finster, PL Curien, Kristina Sojakova, David Gepner: ∞-caty’s

Todd Trimble, André Joyal, Tarmo Uustalu: new theory about Poly

Helle Hvid Hansen, Sean Moss, Bart Jacobs: Logic

Brandon Shapiro, Michael Batanin: polynomial monads for formal CT

And many more... Ross Street, etc., etc.

What do these fields have in common?

What are polynomial functors about?

What makes polynomial functors a center for this kind of convergence?

1 / 20

Introduction Why Poly?

Why Poly?

“Why” does Poly have such centrality within category theory?

I don’t know why it applies to so many things.

But I do know that categorically, it is incredibly rich and well-behaved:

Coproducts and products that agree with usual polynomial arithmetic;
All limits and colimits;
At least three orthogonal factorization systems;
A symmetric monoidal structure ⊗ distributing over +;
A cartesian closure qp and monoidal closure [p, q] for ⊗;
Another nonsymmetric monoidal structure / that’s duoidal with ⊗;

A left /-coclosure
[
−
−

]
, meaning Poly(p, q / r) ∼= Poly(

[
r
p

]
, q);

An indexed right /-coclosure (Myers?), i.e. Poly(p, q / r) ∼=
∑

f : p(1)→q(1)

Poly(p
f
_q, r);

An indexed right ⊗-coclosure (Niu?), i.e. Poly(p, q⊗ r) ∼=
∑

f : p(1)→q(1)

Poly(p ↗
f
q, r);

At least eight monoidal structures in total;
/-monoids generalize Σ-free operads;
/-comonoids are exactly categories; bicomodules are data migrations. This is Cat].

See “A reference for categ’ical structures on Poly”, arXiv: 2202.00534

2 / 20

Introduction Why Poly?

Getting to know Poly: the lens pattern

We’ll begin with the subject of a lot of recent ACT attention: lenses.

Definition

There is a category Lens whose objects are pairs of sets

Ob(Lens) := Ob(Set× Set), denoted
[

A′
A

]
and for which a morphism

[
A′
A

]
→
[

B′
B

]
consists of a pair (f , f ′) where

A f

f ′A′

B

B ′

i.e. f : A→ B and f ′ : A× B ′ → A′. Composition is:

A f

f ′A′

g

g ′

C

C ′

3 / 20

Introduction Why Poly?

Understanding the lens pattern

There are many examples of the lens pattern: namely in

functional programming, X
open dynamical systems, X
wiring diagrams, X
deep learning, no time today

open games, no time today and

databases. X

We can understand Lens
([

A′
A

]
,
[

B′
B

])
in terms of polynomial functors.

4 / 20

Introduction Why Poly?

Polynomial functors

A functor p : Set→ Set is polynomial if it is a coproduct of representables.

Taking all natural transformations as maps, we get a category Poly.

I denote objects in it like this: p := y5 + 3y2 + 7.

For example, p(0) ∼= 7, p(1) ∼= 11, and p(2) ∼= 51.

Let’s call p a monomial if it is of the form p ∼= AyA
′
, e.g. 5y73.

Theorem

There is an isomorphism of categories

Lens ∼= PolyMonomial

where PolyMonomial is the full subcategory spanned by the monomials.

In other words, a Poly map AyA
′ → ByB

′
is a Lens map

[
A′
A

]
→
[

B′
B

]
.

5 / 20

Introduction Today’s talk

Today: introduce Poly in terms of its applications

Davide asked me to speak mainly about the applications of Poly.

There are many, including to pure math.

I’ll focus on a few: programming, dynamical systems, databases.

I’ll introduce structures of Poly as we go.

6 / 20

Functional programming

Outline

1 Introduction

2 Functional programming
Polymorphic data types
Deeper look at Poly
Algebraic datatypes

3 Dynamical systems

4 Databases

5 Conclusion

6 / 20

Functional programming Polymorphic data types

Polymorphic data types and maps

In functional languages such as Haskell, you often see things like this:

data Foo y = Bar y y y | Baz y y | Qux | Quux

data Maybe y = Just y | Nothing

These are polynomials: y3 + y2 + 2 and y + 1 respectively.

They’re “polymorphic” in that

they act on any Haskell type Y in place of the variable y, and

for any map f : Y1 -> Y2 there’s a map Foo Y1 -> Foo Y2

What is a natural transformation Corge: Foo Maybe?

To each type constructor (Bar, Baz, Qux, Quux) in Foo ...

... it assigns a type constructor (Just or Nothing) in Maybe,...

... and a way to grab as many y’s as Maybe needs from Foo’s term.

There are 12=6+3+2+1 ways to do it. Three examples:

Corge (Bar a b c)=Just a; Corge (Baz a b)=Just a; Corge Qux=Nothing; Corge Quux=Nothing
Corge (Bar a b c)=Just b; Corge (Baz a b)=Just a; Corge Qux=Nothing; Corge Quux=Nothing
Corge (Bar a b c)=Nothing; Corge (Baz a b)=Just b; Corge Qux=Nothing; Corge Quux=Nothing

7 / 20

Functional programming Deeper look at Poly

Deeper look at objects and morphisms in Poly

Let’s slow down and understand Poly a little better.

A representable functor Set→ Set is one of the form

yA := Set(A,−)

for example y2 takes any set Y to Y × Y .

y1 is isomorphic to the identity, and y0 is constant 1.

A polynomial functor is a coproduct of representables

p :=
∑
i∈I

yp[i]

Note that I ∼= p(1), so we write p :=
∑

i∈p(1) y
p[i].

Maps p → q are computed using Yoneda and univ. property of coproducts.

Poly(p, q) = Poly
(∑

i∈p(1)

yp[i],
∑

j∈q(1)

yq[j]
)

∼=
∏

i∈p(1)

∑
j∈q(1)

Set(q[j], p[i])

8 / 20

Functional programming Deeper look at Poly

Unpacking in the Haskell case

That might be daunting, but it’s pretty easy when you get used to it.

Let’s see another example of a natural transformation.

Here are two polynomial datatypes, p := y3 + y and q := 2y2 + 1.

data p y = pFoo y y y | pBar y

data q y = qFoo y y | qBar y y | qBaz

What’s a natural transformation Corge: p q?

This crazy formula Poly(p, q) =
∏

i∈p(1)

∑
j∈q(1) Set(q[j], p[i]) says:

For each i ∈ p(1), namely pFoo and pBar, we need to ...

... choose j ∈ q(1), namely either qFoo, qBar, or qBaz and then ...

... for each variable there in q, choose one of the variables in p.
Corge : forall y. p y -> q y

Corge pFoo (a b c) = qBar (b a) -- Corge is one of

Corge pBar (a) = qFoo (a a), -- 57 possible maps.

9 / 20

Functional programming Algebraic datatypes

Algebraic datatypes

Another thing you see in Haskell is something like this:

List a = Nil | Cons a (List a)

For some type a, e.g. a = Int. What is going on here?

This is called an algebraic data type.

It looks like List a is being defined recursively, in terms of itself.

But we can break it into two pieces: a functor and its fixed points.

ListF a y = Nil | Cons a y

This is the polynomial pA := 1 +Ay for some set A ∈ Set. (I like my sets capitalized.)

Polynomial functors have initial algebras and final coalgebras.

That is, there is an initial S ∈ Set equipped with p(S)→ S .

And there is a final T ∈ Set equipped with T → p(T).

The initial algebra of pA is carried by
∑

n∈N An, classic lists.

The terminal coalgebra of pA is carried by AN +
∑

n∈N An, streams.

10 / 20

Dynamical systems

Outline

1 Introduction

2 Functional programming

3 Dynamical systems
Wiring diagrams and interaction patterns

4 Databases

5 Conclusion

10 / 20

Dynamical systems

Various notions of dynamical system

Moving on, there are many reasonable definitions of dynamical system.

Fix a monoid (T , 0,+). Then a T -Dyn. Sys. is a T -action on S ∈ Set.

For example, an action R× S → S let’s you evolve s by any t ∈ R.

We’ll briefly return to this sort later, but it’s not quite satisfactory.

I want open dynamical systems, ones that can interact with others.

S	A B

Let A,B be sets or spaces. Notions of (A,B)-dynamical systems include:

System of ODEs, parameterized by A and reading out B’s.

Moore machine: a set S and functions r : S → B and u : A× S → S .

Mealy machine: a set S and a function f : A× S → S × B.

11 / 20

Dynamical systems

Dynamical systems in terms of Poly

Let’s discuss each of these (saving the monoid action for later).

For any manifold M, let TM be its tangent bundle.

At every point m ∈ M, we have a tangent space TmM.

For example, if M = Rn then TM ∼= Rn × Rn and TmM ∼= Rn.

Then an A-parameterized system of ODEs reading out B’s is a map:

ϕ :
∑
m∈M

yTmM → ByA

Let’s think of M as the state space. Then

for each m ∈ M, we get a readout ϕ1(m) and ...

for each a ∈ A, we get a tangent vector ϕ](m, a) ∈ TmM.

(A,B)-Moore machines are easier.

A set S and functions r : S → B and u : S × A→ S?

That’s the same data a map of polynomials SyS → ByA.

It’s also the same as a ByA coalgebra: S → BSA.
12 / 20

Dynamical systems

Mealy machines

The difference between Moore and Mealy machines involves instantaneity.

An (A,B)-Moore machine is S → B and A× S → S .

An (A,B)-Mealy machine is A× S → B and A× S → S .

In Mealy, the input A can immediately affect the output B.

A Moore machine can be regarded as a Mealy machine (drop A).

It took me a long time to realize that the converse is also true.

An (A,B)-Mealy machine is an (A,BA)-Moore machine.

Indeed, that’s S → BA and A× S → S .

A Mealy machine is a Moore machine that outputs functions.

The transformation isn’t out of the blue: it comes from monoidal closure.

13 / 20

Dynamical systems

Monoidal closure of Poly

Poly has a monoidal closed structure (y,⊗, [−,−]).

Let p :=
∑

i∈p(1) y
p[i] and q :=

∑
j∈q(1) y

q[j]

The Dirichlet product p ⊗ q has monoidal unit y and is given by:

p ⊗ q :=
∑

(i ,j)∈p(1)×q(1)

yp[i]×q[j]

We’ll use that on the next slide.

It has an internal hom [p, q], given by

[p, q] :=
∑

ϕ : p→q

y
∑

i∈p(1) q[ϕ1i]

That’s a lot to take in, so let’s try it for p := AyB and q := y.

First, a map ϕ : AyB → y is just a function A→ B.

Since p(1) = A and q[!] = 1, we have [AyB , y] = BAyA ∼= (By)A.

So an [AyB , y]-coalgebra S → (BS)A is an (A,B)-Mealy machine.
14 / 20

Dynamical systems Wiring diagrams and interaction patterns

Wiring diagrams

Let’s depict monomials ByA as boxes with A-inputs and B-outputs:

ByA is depicted A B

Here’s a picture of a kind of interaction pattern called a wiring diagram:

ϕ := A C

B

E

D

F

It has two inner boxes and one outer box, and represents a map

ϕ : CyAD ⊗ DEFyBC → EyAB

In other words the picture tells us about two functions:

C (DEF)→ E and C (DEF)(AB)→ (AD)(BC)

Wiring diagrams allow projection, splitting, and permuting variables.
15 / 20

Dynamical systems Wiring diagrams and interaction patterns

More general interfaces

A polynomial p =
∑

i∈p(1) y
p[i] can be understood as an interface that

outputs “positions” i ∈ p(1) and

inputs “directions” d ∈ p[i] that can depend on its position.

So ByA can output elements of B and input elements of A.

But y2 + y is like an eyeball: its positions are open and closed and...

... when it’s open it receives a bit; when it’s closed it receives no bits.

An clocked interaction pattern of interfaces p1, . . . pk inside p′ is a map

ϕ : p1 ⊗ · · · ⊗ pk → p′

A wiring diagram is a very special case. For example, there is only one WD

2y3 ⊗ 3y5 → 2y5

but there are 26 ∗ 1530 ≈ 1037 clocked interaction patterns.

16 / 20

Dynamical systems Wiring diagrams and interaction patterns

Composition in Poly: removing the clock

Composing polynomials is a monoidal operation / : Poly × Poly→ Poly.

I denote this functor by /, leaving ◦ for composition of morphisms.

It is straightforward, e.g. y2 / (y + 1) ∼= y2 + 2y + 1. The unit is y.

You can use this to make dynamical systems run faster.

Any map SyS → p induces SyS → p/n for any n.

Because there’s a certain semi-monad structure on AyB , ...

...we can run interior boxes at n-times speed for any n ≥ 1.

ϕ := /8

/61

A C

B

E

D

F

17 / 20

Databases

Outline

1 Introduction

2 Functional programming

3 Dynamical systems

4 Databases

5 Conclusion

17 / 20

Databases

Categorical databases

A database is a collection of tables whose columns can refer to other tables.

One way to conceptualize this is as a category C, “the schema”...

... together with a functor (copresheaf) D : C → Set, “the keys”...

... and one of many possible ways to categorically handle “attributes”.

This approach to databases has been implemented several times.

The two things one does with databases are: migrate and aggregate.

Data migration means moving data from one schema to another.

It includes querying: asking for all matches for a certain pattern.

Aggregation means accumulating attribute values over a column...

... where we assume that the attribute has a comm. monoid structure.

All of this fits nicely into the Poly ecosystem.

18 / 20

Databases

Comonoids and bicomodules in Poly

By a theorem of Shulman, comonoids in (Poly, y, /) form an equipment.

By theorems of Ahman-Uustalu and Garner, it has relevant semantics.

Its objects are exactly categories, so I call it Cat].

Its horizontal maps generalize both copresheaves and data migration.

The subcategory carried by linear polynomials is exactly Span.

It contains Gambino-Kock’s PolyFunSet as a full sub equipment.

It’s got local monoidal closed structures, and tons of other structure.

You can define not only data migration but also aggregation in this setting.

To do so requires all the structures we’ve discussed so far.

For example, it turns out that the operation of transposing a span...

... can be split up into two more primitive universal operations.

Finally, keeping an old promise...

The vertical maps are in Cat] are called cofunctors.

If yT is a monoid, then a cofunctor SyS → yT is a T -action on S .

Using cofree comonoids, dyn. systems are subsumed as “databases”.
19 / 20

Conclusion

Outline

1 Introduction

2 Functional programming

3 Dynamical systems

4 Databases

5 Conclusion
Summary

19 / 20

Conclusion Summary

Summary

The polynomial ecosystem is very rich.

It’s got an abundance of structure; that’s difficult to over-state.

I now know of eight different monoidal structures on Poly.

How many structures are we still missing?

Poly offers a single setting in which lots of ACT subjects live.

Programming, dynam’l systems, databases, deep learning, games.

But how do they come together? How should they interact?

There’s ton’s to do; please join in the fun!

Thanks! Comments and questions welcome...

20 / 20

Appendix

Adaptive interaction patterns

We want to remove the fixed nature of interaction patterns.

That is, we want wiring pattern itself to change through time.

We might call this “adapting”; we’ll briefly consider “goals” on p. 22.

Given interfaces p1, . . . , pk and p′, we want a changing interaction pattern.

Let p := p1 ⊗ · · · ⊗ pk and recall the internal hom

[p, p′] ∼=
∑

ϕ : p→p′

y
∑

i∈p(1) p
′[ϕ1i].

Its positions are interaction patterns ϕ : p1 ⊗ · · · ⊗ pk → p′!

And a direction at ϕ is “the data flowing on all the wires”.

For example if pi = Biy
Ai then direction set is always B1 · · ·BkA

′.

So a [p, p′]-coalgebra is a Moore machine:

it outputs interaction patterns and updates based on what’s flowing.

Define a category-enriched operad Org with objects Ob(Poly) and...

... hom-caty’s [p1 ⊗ · · · ⊗ pk , p
′]-Coalg, or [cp1 ⊗ · · · ⊗ cpk , p

′]-Coalg.

This is the subject of a paper called Learners’ languages.
20 / 20

Appendix Deep learning

Deep learning falls out

Artificial neural networks are adaptive organizations in the above sense.

Let t :=
∑

x∈R yTxR be the tangent bundle; note t⊗n ∼=
∑

x∈Rn yTxRn
.

A [t⊗n, t]-coalgebra is just a Moore machine with a fancy interface.

Let P := Rn+1; think of (b,w1, . . . ,wn) ∈ P as bias & weights.

Then an artificial neuron is a coalgebra P → [t⊗n, t] / P.

For every parameter, we get both a map Rn → R and ...

... a way to convert any tangent vector on R (loss)...

... to a tangent vector on Rn (back propagation) ...

... as well as a new parameter (by gradient descent).

The composite of coalgebras in Org runs the DNN as usual.

Weight tying (as in convolution, recurrent, etc.) is as in Backprop AF.

20 / 20

	Introduction
	Why ?
	Today's talk

	Functional programming
	Polymorphic data types
	Deeper look at
	Algebraic datatypes

	Dynamical systems
	Wiring diagrams and interaction patterns

	Databases
	Conclusion
	Summary

	Appendix
	Deep learning

