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We propose a new, synthetic theory of context-dependent interaction that is
fully computational and compositional. The interacting systems include traditional
dynamical systems, as well as computer programs, resources or agencies in a society,
robots, Als, etc. These systems interact within a given arena by observing each
other’s behavior and reacting to it, where the reaction from a given system depends
on its current reactive state. In special cases, the interaction is determined by a fixed
signal-passing formula: system A consistently receives information x from system
B. Our theory is broader, allowing for context-dependent interaction: the interaction
patternitself can change based on the reactive states of all the systems involved. One
can imagine chemical bonds forming or breaking, companies changing suppliers, a
robot opening its eyes, a GPS going offline, a memory being activated, etc. In each
case, the state of the systems in the arena determine not just the content but also the
sort of information that flows between them.

Category theory and type theory are especially suited to synthetic, composi-
tional reasoning. We propose the category Poly of polynomial functors for the job
described above, because it has excellent formal properties, is extremely versatile,
and can be easily embedded into a computer language like Idris, with full-blown
programming capacity, accessible to a large group of engineers.

What makes Poly appropriate and versatile for this work is the fact that its
many operations (four interacting monoidal structures, two closure operations, etc.)
are all useful in the theory of interacting dynamical systems, as we will show in
this proposal. For example, the composition operator o allows one to arbitrarily
speed up discrete dynamical systems; we can use it to simulate continuous behavior
and apply numerical methods to solve differential equations. We discuss how to
apply these ideas to provide compositional invariants of interacting systems and
resources. The desired result is a mathematically-based, computational design
environment, fully-equipped for creating, simulating, and proving properties of
context-dependent interactions. With this established, we can pursue our interest
in fundamental questions of emergence, e.g. the origins of control and intelligence.
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Statement of Objectives

0 Statement of Objectives

The overall purpose of this work is to pursue fundamental scientific questions within a formal
reasoning system. Like many before us, we are interested in how intelligence arises from
non-intelligence, life from non-living matter, language from chemistry, etc. Observing
complex behavior emerging from black-box systems, we want to understand what is
actually producing it. In many cases of interest, we find the concept of control and
influence: the fact that a system somehow tames an otherwise hostile environment.

To pursue these questions, our main objective is to provide a computational and
compositional design environment within which to build and study context-dependent
interactions between dynamical systems, broadly construed. These systems react to the
distinctions they perceive within their arena of interaction, causing them to change their
abstract or concrete position—e.g. move from being non-communicative to being com-
municative, or from the home to the store—at which point they receive new distinctions
to react to. But the way that information flows through real systems is very often not
fixed: in one moment A is receiving from B, but in the next moment the two are no
longer in communication at all. We want to study this situation—which we call context
dependent interaction—in a compositional way: we should be able to build and analyze
complex wholes by putting together previously-built and more simply-analyzed parts.
Thus our objective design environment should make it as convenient as possible to work
with and reason about these sorts of complex, context-dependent interaction settings.

While often one uses any sort of math available—calculus, probability, temporal
logic, computability theory, etc.—here we wish to pursue these questions within a
single mathematical theory. Category theory and type theory are amenable to this task
because they are both compositional and highly interoperable. In particular, it appears
that a single category Poly, of polynomial functors, is suitable for everything described
above, though we will always work in whatever setting is most appropriate to the task
at hand.

More specific objectives include the following:

Investigate the mathematical theory of polynomial functors;

Investigate their application to context-dependent interaction;

Produce a design environment and/or software library for this work;
Formalize differential equations and their solutions in this setting;
Formalize control, stability, feasibility, etc., in this setting;

Compute invariants and coarse behavior estimates of interacting systems;
Develop notions of hierarchical planning and communication;

Develop game theory—including “when to engage in a game”—for agents;
Consider synthetic biology and artificial intelligence.
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Again, to the greatest extent possible, we hope to do all of this within the single cat-
egorical setting of polynomial functors, because doing so will make the theory highly
interoperable. While we have reason to hope this will work, we may need to move
into a more general categorical theory of dynamical systems. We are open to whatever
mathematical scaffolding allows us to pursue the big questions within a formal system.
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Dynamics and interaction

1 Dynamics and interaction
1.1 Arenas and models

We consider a system to be anything in the real world for which one has a model in
hand. This model—such as the control panel in an airplane cockpit—must be sufficiently
aligned with reality that one can operate within the model and, by doing so, be successful
in reality [Spil7]. A pilot navigates a plane through a real-life situation using only those
aspects of reality that can be made present to the pilot in the cockpit.

Thus a model is a bridge between the outer world and a domain in which we know
how to operate; it is a lens by which we can focus our attention on that which we can do
something about. The model allows us to:

1. steer, by casting our internal choices as positions in the exterior world,
2. watch, by interpreting external conditions as distinctions we can make in our inte-
rior world.

We refer to both the outer world (e.g. the real-life situation) and the inner world (e.g. the
cockpit) as arenas. An arena comprises some notion of position—where we are—and
some notion of distinction—what we can notice. The word “position” is meant in a very
broad sense: our position includes our attitude, our expression, and anything else that
can be observed from the outer world. When one sets out a type of positions and, for
each position a type of distinctions available in that position, one has defined an arena.

Arenas and the models that connect them form a mathematical category. Its objects
are arenas, and its morphisms are models. It turns out that this category is equivalent
to a well-known category, that of polynomial functors; which we denote Poly [GK12]
[SM20]. In a surprising way, the simplest polynomials from algebra class encode (the
simplest) arenas. To see this, take any polynomial, e.g. P(y) = y? + 2y + 1, and write it
out as a sum Y, y' of pure-power terms:!

Ply)=y* +y' +y' +4°

As an arena, the four summands refer to four positions; in the first position there are
two available distinctions, in the second and third positions there is only one available
distinction, and in the fourth there are none. But these are only the simplest polynomials;
in dependent type theory we can be much more general, as one can see in the following
Idris code:

record Arena where

constructor MkArena -- To construct an arena, define:
position : Type -- the meaning of "positions", and
distinction : position -> Type -- the meaning of "distinctions".

This syntax says that one can choose any type to serve as the positions: one is not
limited to the four element set as above, but instead could use the type Double of

1We use the variable y because it stands for Yoneda; indeed, the fundamental category theoretic result
known as the Yoneda lemma is involved when one regards the polynomial 4> + 2y + 1 as a functor. We
refer to y as a functorial variable. One can think of a polynomial simply as a data structure for an arena.



1.1. Arenas and models

double-precision floating point numbers for encoding the real numbers R. Similarly
one could define the type of positions to be R" (Vect n Double) for any n : N, but also
much more generally one can use Arena : Type as its positions. It is as easy to express
a machine that spits out arenas as a machine that spits out Doubles.

Here’s a more or less down-to-earth example:

Lineland : Arena
Lineland = MkArena Double dis --In Lineland positions are real numbers.
where
dis : Double -> Type --The distinctions may vary by location:
dis x =if x < 0 --At negative X's,
then Double --we can only hear; otherwise,
else (Double, Double) --we can both see and hear.

This too is a polynomial; i.e. Lineland is an object in Poly. The above Idris code is
perfectly good as mathematical syntax, though a more traditional polynomial form for
the arena called Lineland would be

Lineland = Z yR+ Z y(Rz).

{x:R|x<0} {x:R|x>0}

In the category Poly, the infinite-exponent terms »™ and ™) count as polynomials, and
their infinite sum Lineland is also a polynomial. The main point here is that arenas are
fully general: the positions or distinctions can be of any type whatsoever, much more
complex than Lineland. When reading this proposal, the terms polynomial and arena
should thus invoke a sense of broad scope, in keeping with the definition of arena above.

The morphisms in Poly are what we called models at the start of Section 1.1. Math-
ematically, they are precisely the natural transformations between polynomial functors.
But here is an equivalent definition that fits our informal description above.

record Model (internal : Arena) (external : Arena) where
constructor MkModel
steer : position internal -> position external
watch : (p : position internal) ->
distinction external (steer p) ->
distinction internal p

What we call polynomials are also called containers in computer science ([AAGO3],
[AAGO5]). They were called dependent lenses in [Spil9], and are a generalization of
lenses in the sense of [BPV06].

A three-way bridge. From this point on, the reader can consider the presentation in
any of three ways:

1. in the intuitive terms of arenas and models,

2. in the mathematical terms of the category Poly, or

3. in the computational terms of a dependently-typed programming language.



1.2. Purpose and objectives

When we speak in one, we are speaking in all three—we will only make intuitive
statements when they are backed up by the mathematical formalism of Poly. Similarly,
any statement we make about Poly is a statement about arenas and models.

Before discussing what we can do within this setup, let’s step back and consider our
purpose and how we plan to pursue it.

1.2 Purpose and objectives

Our overall purpose is to pose and investigate fundamental scientific questions, for
example to understand the nature of intelligence, and how it arises from the interactions
of non-intelligent resources; and to understand life and autopoiesis, and how they
emerge from the interactions of non-living matter. What sorts of internal operations
allow a given black box system to do what it does, to survive within adversity? What
allows these methods to scale to the real world? How does it know what to do, and
who to interact with, in order to achieve its goals, and from where do these goals arise?
In particular, we aim to understand the notion of control: what it means abstractly, and
what makes one form of control ultimately more successful and beneficial to the systems
involved.

Tackling these questions may be a never-ending pursuit, but it guides our work. In
order to approach these questions mathematically, we must first express them formally
and then reason about them computationally. We will show that the category Poly
has a wonderful combination of being very expressive, while also being completely
computational.

Expressive power. Below, we will show that within Poly, one can express the following:

e Opendiscrete dynamical systems—machines that take a time-varying input signal,
change their state accordingly, and produce output.
e Wiring diagrams, such as this one:

Environment —e

e Changing or context-dependent communication patterns, where the type of data
flowing between systems can change based on internal and environmental con-
texts, [ST17].

Coarse-graining of system interfaces.

Planning and strategy, in the sense of games.

1)

Non-deterministic behavior, rewards, exceptions, etc.

Numerical approximations of continuous dynamical system behavior.



1.2. Purpose and objectives

We feel compelled to reiterate that this is much more general than usual consider-
ations. For example, without even allowing for context-dependent interactions we can
already encode all Turing machines, which are dynamical systems with the following

wiring pattern:

d whole tape:
commana: Z 0/ 1’
(LR} X {0,1,_} -0
Processor Tape

read-value:

{0’ 1/—}

Here a central processor sends commands—such as “write to tape”, or “move left”—to

the infinite tape, which in turn follows the command and reports the value of the current
read-head, 0, 1, or blank.
But the real world is more complex, because the interaction pattern—how infor-

mation flows between systems—is not fixed, but varies with the reactive states of the
systems involved. For example:

1.
2.
3.

Airplanes only communicate when they are within a certain range;

A phone is connected to 4G or to wifi depending on circumstances;

A person can choose when to open (receive input through) their eyes and when to
speak (produce output);

. Memories (or K-lines) can be active or inactive, communicating with other re-

sources or not, based on complex conditions;
When too much force is applied to a material, bonds can break;

Force Force Force Force
—O OO 0— —O0C0O oO—

6.

7.

A company may change its supplier at any time;

Supplier 1

Supplier 2

Change
supplier!

When someone assembles a machine, their own outputs dictate the connection
pattern of the machine’s components.
[unit 1 ]—[ unit 2]

In each case the wiring diagram—the connection pattern—changes based on the states
(position, decision-making, environmental context, etc.) of some or all of the systems

involved.
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We hope it is clear that the language Poly is extraordinary in its expressivity. We
are not just talking about expressing the above ideas “formally”, or mathematically, or
even within the sub-discipline of category theory; we are expressing them all within one
specific category.

Computational power. This language was designed to compute. Every aspect of this
theory takes place in the purely formal and fully computational language of arenas
and models, e.g. as embedded in Idris. All the connection patterns between dynamical
systems are stored as computations that can be performed at any time.

To explain this, we begin by looking at the basic structures that make traditional
control theory possible. Namely, the various well-interacting structures that exist on the
set R of real numbers.

The set R of real numbers has the following structures and properties:

1. Ris a field: one has the constants and operations 0, +, —, 1, X, +.
2. Ris alinear order: one can compare reals using <.
3. Ris a complete metric space: there is a notion of distance between reals.

These structures are all useful in modeling dynamics and control. We can use them to
express notions like rates of change, and form differential equations with them, which in
turn express very complex real-world situations. Importantly, these structures all come
with computational counterparts: we can compute 7 * 7t to arbitrary precision, decide
in finite time which is bigger e™ or 7¢, etc.

The category Poly—whose objects are arenas and whose morphisms are models—
also comes with many useful structures. While some category theory is required to
understand the technical detail, we hope non-category theorists will see the parallel:

Theorem 1.3. The category Poly has the following structures:

1. Poly has coproducts and products: 0, +,1, X.

Poly has two additional monoidal structures: ® and o.

Poly has two closure (internal hom) operators: one for X and one for ®.
Poly is a distributive category in two ways and also a duoidal category.
Poly has an orthogonal “vertical /cartesian” factorization system.

o Uk LN

Poly admits an adjoint quadruple with Set.

The parallel is that, like for the set R of real numbers, Poly has many formal operations
at its disposal. Furthermore, the functors Set — Poly allow us to encode the set R of
real numbers within Poly, so all of R’s properties as a field etc. can be used as well.

1.4 Translation: using Poly operations in practice

Our first order of business is to clarify how to model dynamical systems within Poly.
To begin, everything we discuss will be about a (context-dependent) generalization of
discrete dynamical systems. A reader eager for more modeling power might note that
we often want to consider variants of this: continuous or hybrid dynamical systems,
non-determinism, etc. We will get to all that in due time; let’s begin with the basics.
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Define an input-output arena to be one where the distinctions do not depend on
the positions: we think of positions as outputs and distinctions as inputs.? In Idris,
input-output arenas can be defined as follows:

IOArena : Type -> Type -> Arena -- same distinctions
IOArena inp outp = MkArena outp (\_ => inp) -- regardless of position

In terms of polynomials, input-output arenas are exactly the monomials By“, where A
is the set of inputs and B is the set of outputs. The simplest arena is the closed box:
unchanging input and unchanging output. As a polynomial, it is just y; as a box it looks
like a simple enclosure O; and as an arena it is I0OArena () Q.

A central definition for dynamics is what we call a self-referencer. These are arenas
whose positions and distinctions have the same type; we refer to both the positions and
distinctions as states. In Idris we define Self states = IOArena states states. In
Poly these are monomials of the form Sy® for some set S. We can now state the following
proposition.

Proposition 1.5. Let S, A, B be sets. The following are equivalent:

1. A stream processor that takes streams of A’s and converts them to streams of B’s
by updating an internal state variable of type S;

A (possibly infinite-state) Moore machine with states S, inputs A, and outputs B;
A pair of functions readout : S — B and update : S X A — S;

An F-coalgebra S — F(S), where F(Y) := B x Y* for any set Y;

A natural transformation of polynomial functors Sy° — By“;

A model (in the sense of the definition on page 7) of Self S in IOArena A B.

S

This is clearly an idea with many formalisms, but there are important advantages
to working with the last two, i.e. completely within Poly. First, by doing so we can
immediately generalize this idea beyond monomials, i.e. beyond input-output arenas,
so that a system may have more distinctions available in one position than in another.
It is in this way that we may model the seven sorts of context-dependent interactions
(breaking bonds, changing suppliers, etc.) from page 9. We will see this in Example 2.4.

Let us summarize Proposition 1.5 in language we will use throughout the rest of the
proposal.

Definition 1.6 (Dynamical system). A (context-dependent) dynamical system com-
prises:

1. atype s, called its states,

2. anarena I : Poly, called its interface, and

3. amorphism sy®* — I, called its dynamics.

record DynamicalSystem where --A dynamical system
constructor MkDyn --1s constructed by choosing

2To think of outputs in terms of positions, consider the act of talking (giving outputs). In that case, the
quickly-changing positions of ones mouth and larynx are sufficient to “output” the desired expression.
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States : Type --any Idris type as its states,
Interface : Arena --any Arena as its interface, and
Dynamics : Model (Self State) Interface-- any Model as its dynamics.

Just as importantly, by working within Poly, rather than in the other formalisms
in Proposition 1.5, one has a huge wealth of mathematical structure at one’s disposal.
Below we will see how to employ many of these structures. For example, one can
express wiring diagrams and more general interaction schemes. One can also perform
various operations on systems, including speeding them up arbitrarily, by which we can
perform numerical integration of continuous dynamical systems expressed as ODEs.
These systems come equipped with a natural game semantics, which may be useful in
learning, e.g. Monte Carlo tree search style algorithms. Every arena A has a natural
complement (denoted [A, y]), which is the arena of its universal controller; i.e. [A, y]
outputs exactly the sort of values that A inputs, and inputs exactly the sort of values that
A outputs. Finally, we can express nondeterminism, exceptions, rewards, etc., using
(co-) monads.

2 Available operations and their meaning

We will now explain how the operations discussed in Theorem 1.3 make Poly an apt
language in which to work with dynamical systems.

It's important to think of polynomials as data structures, not as functions. They
are arenas of interaction, and so when we add or multiply them, we are manipulating
arenas.

Sums. Let’s begin with some simple arenas like A = ° +2y and B = 4y% + y + 1, which
have only a few positions (three and six, respectively) and few distinctions in each. Their
sum,

A+B=y®+42+3y+1

represents an arena in which there are nine positions: each position is either a position
in A or a position in B. Similarly, the distinctions available are as they were in A or B. If
you own two houses, you can choose where to be in either one or the other, and you'll
receive the distinctions available there: this is what adding polynomials means.

Products. The product of polynomials, again let's say A = y° + 2y and B = 4y* + y + 1
AxXB =4y +y* +9° + 242 + 2y

is quite meaningful from a dynamical systems point of view, as we now show in a simple
example.

Example 2.1. Let’s consider a four-state dynamical system that takes inputs {r, b} and
gives outputs in R. In other words, this is a morphism 4y* — Ry{"*}, and we can draw
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any such morphism quite simply as a labeled transition system:

W

[

e
Each bullet refers to a state. Itis labeled by its output position in R, and it has exactly one
red arrow and one blue arrow emanating from it, indicating how that state is updated
upon encountering an r or a b distinction. Of course, one can imagine the exponent
being much larger than {r, b}, e.g. something like String, where instead every string
would cause a change of state.

Suppose we also have a dynamical system with the same states and outputs (four
states, outputs in R), but now it has makes one distinction {g}. It is a morphism
4y* — Ry!9}, and again we draw one such morphism as a labeled transition system:

e o

@%\;6

No matter how we choose these labeled transition systems, the universal property of
products says that we automatically get a unique way to put them together. We obtain
a morphism 4y* — (Ry!"P} x Ryl9}), which is a new four-state dynamical system, this
time in the arena (R?)y{"t-9}, With the examples above, it looks like this:

C (3.1.4,2) (0‘4)
M) % )
L—
(1.4.1,8) — (2.7;,16) ;—)

Thus the intuitively obvious act of overlaying these dynamical systems falls out of the
mathematics, in particular the universal property of products X in Poly. This works for
non-monomial (context-dependent) interfaces as well.

Dirichlet products. The tensor, or Dirichlet product of polynomials is denoted ®. It
may look uncanny at first because it is almost the same as X, except that one multiplies
exponents rather than adding them. For example if A = »° + 2y' and B = 4y + y' + 3/°,
then we have

A®B =4y + 7 + 30 4+ 8y 12 4+ 211 4 210
=4+ % + 8% + 2y +3
Dirichlet product is arguably the most important operation in Poly from the view-

point of interacting dynamical systems, and it seems to have been overlooked in the
literature on coalgebras and dynamical systems. We have the following;:
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Proposition 2.2. Context-dependent dynamical systems (Definition 1.6) are closed under
.

Proof. The Dirichlet product of self-referencers sy° and ty' is again a self-referencer,
sty®!. Thus if sy° — A and ty' — B are dynamical systems, their Dirichlet product,
sty*® — A ® B is too. It has states s X t. O

Example 2.3 (Wiring diagrams). We redraw the diagram from (1), this time labeling each
wire with the type of information it carries.

System

. (e1,€2) 1 R?
Environment —e

Controller

(2)

Here B is the type of booleans (e.g. on or off), though of course one can replace it with
any type whatsoever. The three internal boxes and one external box in the diagram
correspond to polynomials

E =R?% C= ByR3 P = Ry(CRZ) S=Ry

Indeed as we mentioned on page 11, input-output arenas with input A and output B
correspond to monomials By“. Since the controller outputs B and inputs R? X R, it
corresponds to the monomial By™ .

The wiring diagram (2) itself is uniquely represented as a model, or morphism of
polynomials E® C ® P — S, as defined on page 7. It consists of two functions

R*xBxR —R RZXB xR — 1xR*xBxR?
((e1,e2),b,p) = p ((e1,e2),b,p) = (1, (e1,e2,p), b, (€1, €2))
These just say how the signals move around the wiring diagram (2). The first says that
what’s read out of the entire system is p, the plant temperature. The second says that
the environment passes its variables to both the controller and the plant, the controller

passes its variables to the plant, and the plant passes its variable to the controller. We've
algorithmically encoded the wiring diagram (2) itself as a morphism in Poly.

All the polynomials shown in Example 2.3 are monomials, and the maps imply a
fixed wiring shape; but next we see that this can be generalized to context-dependent
interactions.

Example 2.4. Consider the example shown in Section 1.2, redrawn and simplified a bit:

Supplier 1

‘ Supplier 2 }L{ Company ’

‘ Supplier 1 }l{ Company ’

Supplier 2

Change
supplier!
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The reason for redrawing the picture is that we wish to emphasize that what’s “causing”
the change of supplier is a change in the company’s position. We have also simplified
by assuming that the output of the company is trivial, just to bring out the key point:
context-dependent wiring.

The type of each supplier is Wy: it outputs widgets. The type of the company is
2y": it outputs an element in {1,2}, indicating which supplier it wants, and it inputs
a widget. The information flow pattern shown is a context-dependent wiring diagram
(Wy) ® (Wy) ® 2y") — y, in other words a morphism 2W?y" — y in Poly. When
one traces through what this means, it is given by a function 2W? — W, namely the
evaluation map.

We include these details so that expert readers can see how Poly straightforwardly
encodes the context-dependent wiring diagrams as claimed in Section 1.2.

Internal homs. One does not usually think it is possible to exponentiate polynomials,
i.e. to raise P to the Q power and get another polynomial, but it makes sense from
a category-theoretic point of view. Recall that in numbers, A® counts the number of
functions from a set with B elements to a set with A elements, and there is a universal
evaluation map B X AB - A. Similarly in polynomials, P? tells us the ways to make
a model of arena Q in arena P. In particular, there is a universal evaluation map
Q x PR — P. We will not give the formula here (see [SM20]), but instead say how it can
be used.

Suppose one has a dynamical system sy® — Q with interface Q, but in order for
it to interact with other dynamical systems, we wish it had interface P. One method
to fulfill the wish is to have a model Q — P; then we can compose to get a dynamical
system sy° — Q — P. Another method uses exponentiation. Namely, if we could
find a suitable system sy°* — P2, we could combine the two as in Example 2.1 to get
sy®* — Q x P9 and then evaluate to get sy* — P as desired.

Just like X has a corresponding notion of exponentiation and a universal evaluation
map, so does ®. These are both called monoidal closed structures; we denote the one for ®
by [Q, P] rather than PQ. The universal evaluation is a morphism Q x [Q, P] — P.

One can see the polynomial [P, y] as the universal control interface for P. A position
of [P, y] is precisely a function f that takes every position of P and provides a distinction
there: it feeds P something of the type it needs. Given such a function, the distinctions
available there in [P, y] are precisely the positions of P, i.e. its outputs. So [P, y] provides
what P requires, and it requires what P provides. Moreover, any other interface Q that
interacts with P in a closed system, i.e. for which there is a map P ® Q — y, induces a
unique map Q — [P, y]. Thus [P, y] is the universal control interface for P.

Coarse graining. We may sometimes wish to coarse-grain the arena of a dynamical
system, in order to simplify our analysis. That is, we partition the positions or outputs
of the system into broader classes, in order to leave aside some details in our analysis.
And for such an analysis we may also want to assume that the inputs to the system will
always land in some more specific range.
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In terms of arenas, this is a very natural thing to do. It is given by a map (an
epimorphism) of arenas A - A’.

Proposition 2.5. Let A = (pos, dis) and A’ = (pos’, dis’) be arenas. A morphism between
them is an epimorphism iff the steering function f : pos - pos’ is surjective and, for each
position p : pos the watching function dis’( fp) > dis(p) is injective.

Thus we see that epimorphisms in Poly make it natural to coarse-grain systems.

Composition product. Any two polynomials can be composed; for exampleif A = y°+1
and B = 4y? + y then

BoA = 4A2+A = 4y°+9°+5.

This operator again has interesting semantic meaning for dynamical systems, in terms
of multi-move strategies. Composition product will also let us define what it means to
“speed up” a dynamical system.

To explain this, it will help to rewrite our polynomials very explicitly as a sum
followed by a product. Choose any polynomial P, thought of as an arena with positions
pos and distinctions dis(p). For each p € pos, we have

p=3 1
p:pos d:dis(p)

One can read this as “a choice of position p and, for every distinction d available at p,
I have a y”, where the functorial variable y should be thought of as “unknown future”.
Thus, for example, P o P o P would be the following polynomial:

perer= > [1 3 [] % []

p1:pos di:dis(p1) p2:pos dp:dis(pz) p3:pos dz:dis(psz)

One can read this as “a choice of position p; and, for every distinction d; available at p1,
a choice of position p, and, for every distinction d, available at p>, a choice of position
p3 and, for every distinction d3 available at p3, I have a y.”

We recognize this as a strategy: “I'll do p1, and for whatever move d; she makes, I'll
do pa, ...” Thus P° = Po P o--- o P denotes the set of length-¢ strategies.

Next we see how to speed up a dynamical system using composition product.

Proposition 2.6. Self-referencers S = sy° are o-comonoids. That is, there is a canonical
map S — S°¢ forany ¢ € N.
It follows that if f: sy* — P is any dynamical system, then there is an induced
dynamical system with interface P°¢, namely the composite
¢ I bt
S — §°° — P°°, (3)
Eq. (3) says we may take any dynamical system, even one whose input type depends
on its last output, and speed it up by an arbitrary factor £ € N: in a single time step,
the new machine produces ¢ outputs and takes in ¢ inputs of the form specified by the
original dynamical system.
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Example 2.7 (Differential equations). Consider the system of ODEs X = f(x) where x and
f are n-dimensional vectors; we take the system to be autonomous for simplicity, but it
is easily generalized. For any ¢ > 1, let A; = 1/¢ and consider the difference equation

f(xt)
4

By running £-many steps of this system in a single time step, i.e. by running it £/-times

Xt+1 = X¢ +

faster, we obtain
Xerar = Xt + Ap f(xp), 4)

whose limit as £ goes to oo is the ODE system we started with.

We can approximate this limit to an arbitrary degree within the theory. Consider
the polynomial S := R" y(R”), where 7 is the dimension of the ODE system, and choose
¢ € Ny1. Then there is a map of polynomials S — R"y, giving an autonomous dynamical
system that sends each vector x to x + f(x)/{. Using Proposition 2.6, we can speed up
this dynamical system by a factor of ¢, to get

§— 5% — (R"y)* =R"y.

In other words, this new system outputs {-many n-dimensional vectors in every time
step and precisely implements Eq. (4) for arbitrarily small A;.

In order to generalize to input-output systems is easy. Given an arbitrary (context-
dependent or input-output) dynamical system e: S — A, we can speed it up to get a
system S — S°¢ — A°(, which performs £-many A-operations per time step, each time
running the difference equation e.

Combining Example 2.7 and the above notion of strategies, we see control theory
as the search for strategies by which to accomplish a goal. We will return to this in
Chapter 3.

Monadic Markov decision processes. Markov decision processes (MDPs) are used in
reinforcement learning, because they encode a model of non-determinism and reward.
MDPs are easy to state in terms of Poly; in fact we can generalize the notion of probability
and reward to an arbitrary monad; we call these monadic MDPs.

Monads—originally a construct from pure category theory—are gaining popular-
ity as a programming paradigm; in particular they have been implemented in Java,
Javascript, C#, Haskell, etc. There are monads for all of the following;:

1. Probability: functions return probability distributions;

2. Possibility: functions return sets of possible outcomes;

3. Exceptions: functions return either values or exceptions;

4. Rewards: functions return values, together with elements of R.

Monads can sometimes be combined to form new monads; below we will see that MDPs
use the monad S + Dist(S x R), involving both probability distributions and reward.

The notion of MDP can be formulated as follows. It has an input language A, a set
of states S, and a function

next: A x S — Dist(S X R).
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Semantically this says that for every input a : A and current state s : S, the next function
returns a joint probability distribution on states and rewards.
We generalize this in two ways:

1. Replace Dist(— x R) with an arbitrary monad 9.
2. Allow for partial observability, by including a function obs: S — B for some
observation set B. With full observability we’d have B = A and obs = id.

To make this generalization, we use the following fact.

Proposition 2.8. Every monad 9t on Set induces a comonad on Poly, which we denote
M. It sends an arena (P, D) to the arena (P, D’) where D’p := M(Dp) for any p : P.

The coKleisli category of the comonad 9t* is the category for 9i-Markov decision
processes. In particular, a M-dynamical system is amap in Poly of the form Sy° — M*(P)
for a set S and arena P. By taking P to be an input-output arena with inputs A and
outputs B, the coKleisli morphism is of exactly the kind we wanted:

obs: S — B next: A XS — IN(S).

Thus we can extend Poly by adding effects of any kind—nondeterminism, rewards,
exceptions, etc.—as desired.

Summary. The purpose of the preceding paragraphs was to show that the mathe-
matical operations in Poly (+, X, ®, 0,[—, =], etc.) have direct application in terms of
dynamical systems, giving direct formalizations of non-determinism, strategies, numer-
ical integration of continuous dynamical systems, wiring diagrams, etc.

But we are only at the beginning phases of our understanding; we next lay out our
plans to explore this domain and use it to tackle real scientific questions.

3 Proposed research

Once again, our purpose is to ask and deeply consider fundamental scientific questions
regarding the nature of life, interaction, information, communication, etc.

Throughout our lives, and in our work, we consistently see dynamical systems
interacting within arenas, whether these be atoms under a microscope, cells in a petri
dish, robots on a soccer field, Als playing Go, organizations hiring talented coders,
etc. Such systems get arbitrarily complex, but with a compositional, expressive, and
computational formalism, there is no bound to what we can consider; it just requires the
effort necessary to explain it precisely.

What we have presented so far in this proposal is only one such setting—albeit one
with good potential—in which to work. In our research effort, we will not be bound
by a single formalism but instead use whatever tools are available to us. However, it is
certainly useful to have a solid place to start, and Poly provides that.

Below, we will discuss some of the concrete questions we propose to pursue with
suitable funding.
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3.1 Mathematics

As discussed above, the category Poly has an abundance of formal structures and
properties, but there is much to explore.

Porting known concepts. There is a great deal of work on using coalgebras to study
dynamical systems, e.g. [AM74], [Jac17], [Has+09], [HKR16], etc. Our setup is more
general (see Proposition 1.5) and working completely within Poly gives us access to
various useful operations that do not seem to have been investigated previously in this
context. Still, it is worthwhile to glean as much as we can from these predecessors.

Comonoidsin Poly. Whatmakes our dynamical systems really work is the fact that sy/°
isa comonoid in (Poly, o, y). It was shown in [AU16] that comonoids in Poly are precisely
categories. The comonoid sy° corresponds to a particularly simple category called a
contractible groupoid. Richard Garner showed that bimodules between comonoids
are exactly parameterized right adjoints in the sense of [Web07], which are exactly
data migration functors in the sense of [Spil2]. These connections have not been fully
understood in the context of dynamical systems, but it will likely lead to some sort of
mutual theory of process and data.

String diagrams. Dependent type theory provides a syntax for working with poly-
nomials, however especially when one begins using operations like o, expressing mor-
phisms and reasoning about their equality becomes complex. Of course this is to be
expected: the theory is very expressive and nothing comes for free. Still, it would be
useful to have a string diagram language for maps of polynomials. Presumably, this
would generalize the static wiring diagrams such as shown in (2).

Double category for generalized lenses. It was shown in [MS20] that the category of
polynomial functors with cartesian morphisms is equivalent to the category of Dirichlet
functors with cartesian morphisms. In fact there is a double category that includes all
of Poly and all of Dir, the category of Dirichlet functors. One can consider this double
category (Myers’ Grothendieck double construction) for any generalized lens setup as in
[Spil9]. If the category Poly does turn out to be too restrictive in any way, we will likely
try this setting first, as it is a direct generalization.

Generalize beyond sets. The theory of polynomial functors can be formulated in any
topos. Perhaps a good topos to work in is smooth spaces, which are a vast generalization
of manifolds. It remains to determine whether the dynamical systems applications of
the various structures enjoyed by Poly still make sense when replacing Set by another
topos.
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3.2 Design environment

We seek to engage as many interested parties as possible in pursuing this work. This
includes mathematicians, scientists, engineers, even social scientists, etc. Doing so will
be facilitated if we can offer tools that help people think about these complex matters.

Idris, Agda, or Coq implementation. We currently have developed a small library of
useful functions in Idris, including all of the structures discussed in Chapter 2 above.
We can run the programs and see actual results. However, there is much work to be
done.

First, it would be useful to add IO, so that the programs can interface with the outside
world. Second, we need to add a number of examples and design patterns, so that users
can make learn and create by example.

Domain-specificlanguage. Inorder to really make this framework available to a larger
group of users, we should create a domain-specific language that facilitates the creation
of context-dependent interactions of dynamical systems. This language would stream-
line the syntax and provide visualization tools, better 10 interfaces with languages like
Simulink, etc.

Type search. With operations +, X, ®, o, etc. at ones disposal, it is quite easy to build
new types from an existing library of older ones. How should such a library be orga-
nized? Perhaps one needs a dynamical system with a certain interface; is there a way to
search the library of existing dynamical systems for one with an interface of type A?

Solvers. To make the design environment most useful, we should implement various
solvers, e.g. for numerically integrating a system of ODEs. More interesting would be
to have available solvers at least for basic control theory problems.

Operating system that connects to or disconnects from the internet. As a proof of
concept, we could develop a basic operating system that works with a keyboard and a
monitor, and can connect to internet or not, based on user commands. Of course this is
not new, but the hope is that our design environment provides an ergonomic setting in
which to build such systems.

3.3 Economics and game theory

We saw on page 16 that strategies, e.g. for game trees, are easily expressed using the
composition product o. The PI was brought to a study of Poly by thinking about
generalized lenses [Spil9], which are related to work by Ghani, Hedges, and others
[Gha+16; Hed17] in the field of open economic game theory. We would like to reunify
these two sibling fields.

In economics, supply chains must change dynamically, routing around unforeseeable
logistical problems that arise. This sort of situation can be studied within our system,
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e.g. using context-dependent wiring diagrams such as = = . This is wide-
open territory for consideration, and we would like to work with economists to consider
it in detail.

3.4 Control

When we admire a great man or woman, when we are astonished at a game-playing
robot, what often startles us is their ability to bend reality to their purposes, to make
it work for them. This is the intuitive concept of control. The mathematical problem
is to design an input-output (or perhaps context-dependent) dynamical system whose
outputs keep another system within a stable regime, or more generally keep it close to
a given reference signal. One thus proposes their target and aims to hit it.

A control problem for dynamical systems involves formulating a policy for inputs
which will drive a given dynamical system through a desired trajectory, or sequence of
states. Note that this includes holding the system in a constant state, such as desired
by a cruise control system for a vehicle. More generally, one might be interested in the
problem of controllability—that is, the existence of control policies for any trajectory
chosen from some suitably interesting set—or the yet still more general problem of
reachability, i.e. whether it is possible at all to drive the system into a certain state.

Note that the complex interconnectedness of real systems means that any real and
useful solution must inherently take into account the possibility of composition—i.e. of
interactions with external systems such as obstacles between a robot and its goal—that
could frustrate the desired action. In other words, context matters. When one does not
know the external context, its unknownness must be present as a functorial variable in
ones model. Otherwise their model will mysteriously break when confronted with the
greater reality. This sort of problem arises in synthetic biology, for example.

Denying the greater context by modeling systems in isolation is a fallacy our system
naturally avoids. Even a closed box (denoted y) retains a functorial variable for inter-
connection later. Avoiding the isolation fallacy does not help solve control problems,
it only assures that when we do solve them, our answers will be useful even when the
system is put in contact with a larger environment. Control problems can be stated in
terms of Poly, and we want to port existing solution concepts (to the extent they avoid
the isolation fallacy) and produce new solutions.

We have said that Poly is fully computational, and what this means is that by simply
stating a control problem in the mathematics of Poly, one has in hand a ready-made
simulator for the problem at hand, written in Idris. While simulation can be quite
useful, we want to go further by providing tools for tractable, mathematical analysis of
control problems. That is, when a class of problems can be tackled in constant time by
encompassing them in a mathematical formula, we want methodologies for finding that
formula. This is a perennial problem, and one we must confront within our system.

A trade-off between expressivity and computability is inherent to any logic or lan-
guage. In order to use a framework to solve a given problem, the framework must first
be expressive enough to encode it, and then computationally powerful enough to solve
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it. This is especially critical in active situations where time-to-decision is of paramount
importance. We propose Poly as an advance for two reasons: first, as already discussed,
the category Poly is almost singularly rich in structure, which permits powerful reason-
ing; and second, its compositional translation between ‘inner” and ‘outer” worlds allows
management of approximation.

We hope to collaborate with someone like Jared Culbertson at AFRL on the control
theoretic aspect of this research. Let us get a bit more specific.

Computational representation of continuous-time and hybrid dynamical systems.
Engineering problems such as the control of aircraft are often in the first instance mod-
eled as continuous-time systems. Any computational solution to the control problem,
however, acts digitally; a common way to handle this is by constructing numerical ap-
proximations to the continuous-time model. This numerical simulation is often done in
an ad hoc manner, with choices made about the approximation hidden, and external to
the model. What matters for a control problem is simply that the discrete approximation
is fine enough.

In our polynomial approach, we must explicitly declare the type of time objects. The
structure of Poly (in particular the composition product), allows us to also relate differ-
ent time scales. While other representations of continuous-time systems are possible,
and indeed can be used when necessary to bring in tools from differential geometry,
this ability to relate time scales opens the option of representing a system as behaving
continuously with respect to another as one that is acting on a sufficiently finer timescale.
Moreover, the context dependence of our dynamical systems allows natural representa-
tion of hybrid dynamical systems as a system with multiple regimes (modeled through
an arena’s positions) that is coupled with a system that pushes it from one regime to
another.

As a first step towards practical tools for control, we propose to explore, in our
computational design environment, how to construct and control these computationally-
aware representations of continuous-time and hybrid systems.

Tractability through approximation. Relatedly, by implementing Poly in a dependently-
typed language such as Idris, our dynamical systems are built from the ground up in a
computationally-aware way. Modeling and computation are not separate in our setup:
we do not write programs to numerically approximate our models; the programs are the
models. The fact that this is built-in allows us to, uniformly within our modeling frame-
work, specify notions of abstraction and approximation. We may relate two models of
a system (e.g. a more complex model with richer features, and a simpler model that is
more computable) by a morphism describing the approximation, and hence keep track
of the detail traded away to improve computation speed.

Tractability through one-sided verification. Compositional methods allow construc-
tion of solutions from analyses of simpler parts, which may be done in a distributed
manner. Recent work by Baez and Pollard provide one route to computational tractabil-
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ity by providing one-sided guarantees for Markov processes (e.g. methods that can be
used to prove a certain state can be reached via analysis of simpler subsystems, but that
cannot be used to rule out reachability) through categorical and compositional methods
[BP17]. The category Poly provides a much more expressive framework in which similar
methods could be obtained.

Logics for controllability. Compositional approaches to control are not new; pioneered
for example by Willems’ behavioral approach. Previous work shows that Willems-style
compositional analysis of controllability of dynamical systems benefits from a categorical
treatment, for example by permitting a formal logic of wiring diagrams that significantly
simplifies proofs of controllability [FSR16]. Like Willems” own work this is based on
powerful algebraic techniques for manipulating linear systems, though of course this
only goes so far in real-life situations.

On the other hand, approaches such as the template-anchor work of Koditschek
and collaborators seek more powerful mathematical underpinning; indeed, recent work
in collaboration with Culbertson and others explores the use of categories of hybrid
systems and hybrid semiconjugacies [Cul+19]. In addition to the ability to express non-
linear and hybrid systems, however, such a category needs enough structure to permit
algebraic reasoning. With the wealth of operations detailed in Chapter 2 in mind, we
propose that Poly may provide the structure needed to take this approach further.

Calculus of variations. In variational calculus, one attempts to find a function that
minimizes or maximizes a functional, a real-valued function of functions. It is worth
asking whether there is a similar notion for polynomial functors. Given a target behavior
of the total system, and given the dynamics of some boxes in a wiring diagram, one can
ask the question: what dynamical system can we put in the remaining box to minimize
the distance to the target behavior?

Hierarchical planning. Control is often considered a low-level aspect of a general mis-
sion, namely how the lowest level actuators respond to given well-designed and stereo-
typed inputs. We have been using the term ‘control”’ much more broadly. When leaving
the world of differential equations and moving into more information-rich worlds, we
seek a notion of control that fits at all levels, as well as a way to integrate controllers
at these different levels. At the lowest level, we might move actuators at microsecond
timescales, whereas at the top level we might make broad-strokes decisions about how
to carry out a mission.

Negotiation between these levels can be formalized category theoretically. However,
time-to-decision is a crucial variable that has been left out. Justlike a Go-playing Al must
decide whether to keep searching for better moves or to play now and keep more clock
time for later, timeliness is an important factor in all decision-making. The category
Poly does have an explicit operation (o; see page 16) that allow us to consider multiple
time-steps at a time. We will investigate whether it or some other structure can be used
to fluently pose and answer questions about time-to-decision.
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Predictive processing The free-energy minimization approach to prediction and con-
trol [Fril0] is gaining traction in a wide variety of applications, e.g. as a “fundamental
theory of brain function.” The central idea is that higher-level processing units send
predictions downward toward the lower-level units (those closer in the pipeline to the
sense organs). Rather than reporting the whole scene, the lower-level units report back
only the error, the difference between the scene and the prediction received. This use
of predictive coding saves on resources (sending only the error requires fewer bits than
sending the whole scene). Moreover, the error signal serves two simultaneous functions:
first it corrects the hypotheses of the higher-level units, updating them about the current
state of the world. Second, the error can be sent to the actuators as a control signal.
The justification for this is quite intriguing and forms what is becoming a large body of
literature.

Many believe (e.g. [Mou78; HB07]) that the entire human neocortex is repeatedly
performing a single function, and that the differences between the different regions—
say the auditory and the visual—are just a reflection of the fact that some are closer
to the ears and some are closer to the eyes. The predictive processing and free-energy
minimization approach present a plausible theory of what this single function could be.

Thus we will explore whether we can use this notion as a unified approach to control.
Our goal is to find a simple enough rule for “what goes in the black box” that we can
derive functionality of arbitrary complexity—at least as much as humans achieve—with
simple units.

Models revisited When one boxes up the environment and the plant in (2) and does
not export the plant state, the resulting diagram is this:?

R2Z  (Can'’t control this)

B (Control signal)
Controller Plant

R (Try to control this)

By® @ R%® -y

What makes the plant different than the controller is that the controller has a model of
the plant, but not vice versa. What then is a model in this language? We have already
used the term model throughout this document—a model is a morphism in Poly—and
we can use the same notion here.

In order to understand what it means for the controller to have a model of the plant,
we wish to know what the type CtrlState—the internal states of the dynamical system
Controller—should be, as it relates to the interface arena of the plant. Since the states
in an arena can be of any type in our implementation, one possibility is to use a type

3The wire types, R?, B, R here can be replaced by any Idris types in the wiring diagram (cy°? ®epy® — y)
of the more general control problem.
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such as
CtrlState = Model (Self (Vect 1000 Double)) Plant.

The idea is that the states of the control system could literally be the Idris type of Models
in the sense we’ve been using all along. Here for illustration purposes we imagine that
the controller models the plant as having a 1000-dimensional state space.

Again, setting the right state space and dynamics for the controller is a perennial
problem and not one that we know how to solve in full generality. However, the self-
reflective nature of our language allows us to model models, and hence have dynamical
systems that explicitly model other dynamical systems, both in a conventional sense and
in the precise sense of morphisms in Poly.

3.5 Summary

Thus our story ends where it began: on the subject of models. In order to understand
and shape reality, we must model it. Our precise notion of model (morphism in the
category Poly, shown on page 7) is robust enough to “eat its own dog food”. That is,
not only are Models the external framework we use to investigate dynamical systems,
but the same notion of Model can also serve internally as the state space of a dynamical
system, e.g. for control.

This self-reflective language is ripe for exploration in a huge number of directions—
as we hope to have indicated above—and with it we will consider the deepest scientific
questions of our time.
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A Assurances
A.1 Environmental impacts

This research is purely mathematical, and thus it will have no environmental impacts;
compliance with environmental statutes and regulations is thereby assured.

A.2 Principle investigator (PI) time

The principle investigator plans to spend 75% of his effort each year of the grant. To
carry out a significant fraction of the research proposed above, he would need to hire
three to five other researchers, at various levels.

Current Projects and Pending Proposals The PI is starting work at Topos, a new
nonprofit research institute, as of January 1, 2020; at the outset it appears he will have
no other projects.

A.3 Facilities

Topos provides basic office space and has a budget for books and other resources as
requested by its faculty and research staff.

A.4 Special test equipment

None.

A.5 Equipment

None.

A.6 High performance computing availability

Not needed.
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