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Introduction An introductory account

Why am I here?

I think this may be one of the fundamental questions of consciousness.

In order to flourish, I need to understand my role, how I fit.

What enabled me and persuaded me to be here?

This question orients me to the situation and directs my work.

I’ll give an answer below, but first let me reframe “consciousness”.

To me, consciousness is extended, not isolated within individuals.

I think of consciousness as that which brings senses into coherence.

The structure of our brain brings our senses into coherence.

How much consciousness is in the built environment?

How much consciousness is in an organization’s culture and policies?

I’m here because I want a systematic account of collective sense-making.

How do different sense-makers form into a collective sense-maker?

Neurons form brains, humans form organizations; we see it all around.

The senses are not in a heap; they interact and inform each other.

I want math with which to talk carefully about these ideas.
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Introduction Mathematics as accounting

Accounting

We solve big problems together by coordinating our activity.

When my efforts and yours conflict, it causes friction and loss.

When we coordinate, we stop stepping on each others’ toes.

To work collectively, our activities must align.

We give accounts. We explain our activity in terms of the collective.

As the collective matures, its internal accounts become more systematic.

There is friction every time I misinterpret your account of something.

Or if your account hides key variables, externalities that I must handle.

Systematicity increases transparency, communic’n rate, and reliability.

We become more systematic so that we can regulate each other.

Note: regularity is different than predictability.

A chess game is regular (pawns don’t move left), not predictable.

Regulation: “Hey, you can’t move a pawn left”; “Oh, oops!”.
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Introduction Mathematics as accounting

Mathematical fields as accounting systems

I think of mathematical fields as crystalized accounting systems.

Arithmetic accounts for the flow of quantities, as in finance.

Hilbert spaces account for the states of elementary particles, as in QM.

Probability distributions account for likelihoods, as in game theory.

Calculus accounts for relative rates of change.

We want systematic accounting for collective sense-making.

Math’ns like Newton, Pascal, Frege made new accounting systems.

Carefully track the phenomena, articulate the structure, systematize.

So we want to track and articulate the structure of sense-making.

Category theory (CT) is the accounting system for interlocking structures.

Mathematical definitions are composed of interlocking structures.

Category theory tracks the layers of structure and their connections.

This makes analogies—similarities of structure—into formal objects.

It accounts for the fact that different accounting systems cohere.

Goal: use CT to articulate the structure of collective sense-making.
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Introduction Mathematics as accounting

The morphology of collective sense-making

Collective sense-making—the product of culture—is all around us.

It’s in our science, our technology, our governance, our morality.

Each of these is the product of our work over millennia.

Each body is a collective of cells whose individual intelligences...

... work harmoniously to create the intelligence at our level.

I want a language and logic for the shape of collective sense-making.

In particular, I want to be able to talk about this leveling up.

Rather than understanding the lowest level physics...

...and relying on “emergence” to get us to human intelligence, ...

... I prefer to look for construction principles that are compositional.

Wanted: an algebra by which interacting sense-makers form a sense-maker.
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Introduction Mathematics as accounting

Dynamic organizational systems

Any life-form is a collective, a dynamic organization of smaller parts.

The organization provides an interaction pattern for the parts.

The RNA interacts with the nucleus and the ribosome, etc.

What occurs during these interactions can change the organization.

As an extreme example, death will allow the system to disintegrate.

A CEO may see what’s occurring and change the company org-chart.

I would like to provide an accounting system for the above idea.

Open dynamical systems that interact with each other...

...according to some pattern: the type of signals/materials that flow.

The interaction pattern itself can change based on what flows.

The CT tool I think we can use is called a dynamic organizational system.

It is based on the theory of polynomial functors.

Training an ANN (deep learning) is an example of a DOS.

Other examples: prediction markets, Hebbian learning.

Can it be extended to collective sense-making? This is open.
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Introduction Plan for the talk

Plan

Here is the plan for the rest of the talk.

Give an account of sense-making and collective intelligence,

Discuss polynomial functors,

Introduce dynamic organizational systems,

Conclude.
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An account of sense-making and collective intelligence Sense-making

Sense-making: the pun that wasn’t

We want to understand collective sense-making.

But what is sense?

And what does it mean to make sense?

By sense, I don’t mean raw perception.

A spidey sense, a sense of danger or opportunity, a sense of direction.

These are not mere perception. They’re tracking the right variables.

When we have a good sense of something, we navigate it with ease.

Consider a snapshot of two math students, both wanting to succeed:

Student A is faithfully copies down what the teacher says.

Student B seems to be doing the opposite: ...

...clearly frustrated, arguing with the teacher, “but then why XYZ??”

Suddenly student B says “Oh!! Is it because ABC??”

B relaxes, having made sense. Later: B does better than A on tests.

Making sense of things takes work, but it produces sense!

The work of trying to make things fit together results in new sense.

We can solve harder problems if we make better sense of things.
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An account of sense-making and collective intelligence Settling accounts

Settling accounts

How are our senses made? Our sense of danger, of sight?

Could past sense-making activity, installed into deep structures...

... account for the senses we have today?

What could “sense-making” be such that the pun is accurate?

I hypothesize that sense-making has to do with proper accounting.

When we shake our head and say “that doesn’t make sense”...

... we’re saying it doesn’t settle the accounts. Something is left over.

We jiggle the pieces, try different arrangements until click.

Something settles. The energy level drops. Delightful!

Once there’s a click, things start to become regular.

We find an articulation that regularly captures relevant aspects.

This is exactly the sort of thing we can write down.

More generally, we can install it into deeper structures.

8 / 25
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An account of sense-making and collective intelligence Fitness as the quality of fitting

Consciousness, sense-making, and fit

So far I have made various claims, which I now want to recall.

I think the question “why am I here?” is fundamental.

I think of consciousness as that which brings senses into coherence.

The production of higher-level sense has to do with proper accounting.

Soon we will be talking about math for dynamic organizations.

Different dynamic systems interacting within a sort of ecosystem.

We only have simple examples so far, e.g. ANNs.

I want help creating a dynamic organizational system of sense-makers.

If ANNs are optimizing a function, what should sense-makers do?

If sense-makers want to cohere, they should understand their own fit.

Etymologically, fitness means “the quality of fitting”.

When the sense-maker understands math, they see how it all fits.

“Why am I here?” asks “how do I fit”? “What is my role?”

If each member of a collective has a good sense of their own fit,...

...it creates coherence, establishing higher-order (collective) sense.
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An account of sense-making and collective intelligence Fitness as the quality of fitting

How the math fits in

I was trained as a mathematician, not as a philosopher.

My role here is not to philosophize all hour, but to present some math.

The math is intended as an accounting system for something relevant.

Namely, it accounts for coherent interaction of dynamical systems.

I’ll next introduce the main tool: polynomial functors.

Polynomial functors—despite the boring name—are stunning.

They’re the most highly structured and...

...unreasonably effective abstraction I’ve ever seen.

Polynomial functors form the basis for dynamic organizational systems.

I’m going to explain polynomial functors at many levels simultaneously.

You may not understand certain ideas/words; just let them go.

I won’t leave you long without something you can make sense of.

10 / 25
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Polynomial functors Unreasonable effectiveness

Unreasonable effectiveness

Wigner lauded math as unreasonably effective in the natural sciences.

Many of his assertions also affirm the effectiveness of CT in math.

He mentions the miracle that is our ability to make sense of the world.

Probably the real miracle here is abstraction, a bi-directional thing:

We can take a concrete situation and boil it down to an abstract one.

This first part can be imagined as a function b : C → A.

Then we can take conclusions about the boiled down b(c) : A and...

... transport them back to the concrete situation c we started with.

I think Poly is similarly unreasonably effective for computer science.

The category Poly is strange but still pretty easy to think about.

In some sense it’s all about plumbing abstractions.
It’s got tons of structure: limits, colimits, three orthogonal factorization systems, infinitely-many
monoidal closed structures, various coclosures, its comonoids are categories, its monoids generalize operads, etc.

But it also has tons of applications in CS: Moore machines and Mealy machines,
databases and data migration, algebraic datatypes, bi-directional transformations, dependent type theory, effects
handling, cellular automata, rewriting workflows, deep learning.

So what are polynomials?

11 / 25
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handling, cellular automata, rewriting workflows, deep learning.
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Polynomial functors Unreasonable effectiveness
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Polynomial functors Definition and intuition

Definition and intuition

A polynomial p is essentially a data structure. Here are three viewpoints:

Algebraic Bundle Corolla forest

y2 + 3y + 2

•

•
•

•

•

•

•

•

•

• •
π • • • • • •

Cat. description: Poly = “sums of representables functors Set→ Set”.

For any set S , let yS := Set(S ,−), the functor represented by S .

Def: a polynomial is a sum p =
∑

i :I y
Pi of representable functors.

Def: a morphism of polynomials is a natural transformation.

Note that I = p(1); this is a convenient fact. Write p[i ] for Pi .

Other ways to see a polynomial p =
∑

i :I y
p[i ] as an interface:

A set I of types; each type i : I has a set p[i ] of terms.

A set I of problems; each problem i : I has a set p[i ] of solutions.

A set I of body positions; each pos’n i : I has a set p[i ] of sensations.
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Polynomial functors Definition and intuition

Combinatorics of polynomial morphisms

Let p := y3 + 2y and q := y4 + y2 + 2

•
1
•
2
•
3

p

•
1
•
2
•
3
•
4

q

A morphism p
ϕ−→ q delegates each p-position to a q-position, passing

back directions:

•
1

•
1

•
2

•
1

•
3

•
4

It’s like we said about abstraction. ϕ : p → q means: ...

...ϕ abstracts each problem in p to one in q, and...

...ϕ then implements each q-solution as a p-solution.
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Polynomial functors Definition and intuition

Operations: +,×,⊗, /, [−,−]
Given two interfaces p, q, there are many ways to get another interface.

For each we’ll say the problems and solutions for resulting interface.

Sum p + q: problem is i : p(1) or j : q(1); solve it.

Product p × q: problem is pair (i , j) : p(1)× q(1); solve either.

Dirichlet product p ⊗ q: prob’m is pair (i , j) : p(1)× q(1); solve both.

Substitution product p / q: prob’m is choice of i : p(1) and...

...for every solution a problem j : q(1); solve first then second.

Internal hom [p, q]: problem is polynomial map ϕ : p → q;...

...soln: problem i : p(1) and solution to its image ϕ1(i) : q(1).

Letting p :=
∑

i :p(1) y
pi and q :=

∑
j :q(1) y

qj

p × q =
∑
(i ,j)

yp[i ]+q[j] p ⊗ q =
∑
(i ,j)

yp[i ]×q[j]

p / q =
∑
i :p(1)

∑
j : p[i ]→q(1)

y
∑

x :p[i ] q[jx] [p, q] =
∑

ϕ : p→q

y
∑

i :p(1) q[ϕ1i ]

14 / 25
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Polynomial functors Open dynamical systems

Open dynamical systems: Moore machines

We will be interested in open dynamical systems.

An open dynamical system has an interface, which we draw as a box.

A B

A1

A2

B1
B2
B3

A,B are sets, the set of things that can flow on the wire.

The input ports are drawn on the left and output on the right.

An (A,B)-dynamical system has internal states, which govern its behavior.

That is, it includes a set S : Set and two functions:

a function ϕrdt : S → B called readout and

a function ϕupd : S × A → S called update.

All this is called a Moore machine and is nicely represented in Poly.

The interface is represented by the polynomial ByA or B1B2B3y
A1A2 .

The readout and update are defined by a single polynomial map

ϕ : SyS → ByA
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Polynomial functors Open dynamical systems

Wiring diagrams

Here’s a picture of a wiring diagram:

Plant

Controller

A

B

C

C

System

It includes three interfaces: Controller, Plant, and System.

Controller = ByC Plant = CyAB System = CyA

The wiring diagram represents a map Controller⊗ Plant→ System.

ByC ⊗ CyAB −→ CyA
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Polynomial functors Open dynamical systems

Moore machines and wiring diagrams as lenses

Plant

Controller

A

B

C

System

To summarize what we’ve said so far:

A wiring diagram (WD) is a map, e.g. ByC ⊗ CyAB −→ CyA.

Each Moore machine is a map, e.g. SyS → ByC and TyT → CyAB .

We can tensor the Moore machines and compose to obtain STyST → CyA.

So a wiring diagram is a formula for combining Moore machines.

The whole story is polynomials, through and through.

So far, all the polynomials we’ve been using are monomials AyB .

For “mode dependence” where interfaces can change, use gen’l polys.
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Polynomial functors Open dynamical systems

Moore machines, Mealy machines, and coalgebras

There’s a little more to say about open dynamical systems.

We just said that an (A,B)-Moore machine is a map SyS → ByA .

This is equivalent to a more common cat’ical approach: coalgebras.

An (A,B)-Moore machine is equivalently a function S → ByA / S .

There’s another whole type of dynamical system: Mealy machines.

The two are actually inter-convertible, but they have different forms.

Moore: S → B, S × A → S Mealy: S × A → S × B

SyS → ByA SyS → (By)A

To get from input to output takes one step in Moore, instant in Mealy.

An (A,B)-Moore machine is a special (A,B)-Mealy machine.

An (A,B)-Mealy machine is exactly an (A,BA)-Moore machine.
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Dynamic organizational systems Categories where the morphisms are changing

Categories where the morphisms are changing

Imagine something like Set, except that morphisms are dynamic.

For sets A,B, a morphism f : A→ B is a machine with states S .

In its current state s : S , it outputs an actual function fs : A→ B.

Given an input a : A, it not only tells you fs(a) but updates its state.

I want to call refer to a morphism f as a dynamic function.

We’ve actually already seen these: they’re the (A,B)-Mealy machines.

That is, they are the functions f : S × A→ S × B.

This fits into a more general Poly story, namely using internal homs.

I’ll spare you the details, but here’s the basic idea:

For any p, q : Poly, a [p, q]-coalgebra is a dyn’l system that...

...outputs interaction patterns p → q (e.g. any wiring diagram)...

...and updates internal state based on what flows along the wires.

Again, in the case p = Ay and q = By, you get Mealy machines.

Two more technical slides.
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Dynamic organizational systems Categories where the morphisms are changing

Definition of Org

We can now define the bicategory Org.

Ob(Org) := Ob(Poly), objects are polynomials.

Org(p, q) := [p, q]-coalg.

Example: suppose p = ByC ⊗ CyAB and q = CyA.

Then for any state s : S of a [p, q]-coalgebra (S , f ), we have first...

...a map p → q. For example, we may have this one:

Plant

Controller

A

B

C

C

System

That is, we’re outputting interaction patterns. We have second,...

...a state update function whose input is “what flows on the wires”.

So (S , f ) outputs interaction patterns and listens to what flows.
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Dynamic organizational systems ANNs in terms of Org

ANNs in terms of Org

We can now describe artificial neural networks in this language.

Let t :=
∑

x∈R yT
∗
x R ∼= RyR.

So “positions of t” = points in R and “directions” = gradients.

Note that t ⊗ t ∼=
∑

x∈R2 yT
∗
x R2 ∼= R2yR

2
and similarly for any t⊗n.

A [t⊗m, t⊗n]-coalgebra consists of:

A set S of states / parameters / weights&biases, and for each s : S ...

... a function fs : Rm → Rn and ...

... a function (x : Rm)× (y ′ : T ∗fs(x)R
n)→ S × T ∗s Rm.

This latter thing might be called “update and backprop”.

It takes an input x : Rm and a gradient y ′ : T ∗f (s)R
n and returns...

...a new/updated state s ′ : S and a backprop’d gradient x ′ : T ∗s Rm.

There are many such [t⊗m, t⊗n]-coalgebras.

One has carrier S := {P : N, f : RP × Rm → Rn diff’ntiable, p : RP}.
The state (P, f , p) updated by training pair (x : Rm, y ′ : T ∗f (p,x)R

n)

... is (P, f , p′) where p′ := p + πP
(
Df >(p,x) · y

′).
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Model of prediction markets

Let’s consider a simple version of a prediction market. Suppose:

There is a fixed finite set X of outcomes.

Each participant can output a prediction P : ∆+(X ) where

∆+(X ) :=

{
P : X → (0, 1]

∣∣∣∣∣ 1 =
∑
x∈X

P(x)

}
Each participant then receives the result, an element x : X .

It’s compositional if we assign predictors a relative “trust” / “wealth”.

Let n be a finite set of predictors. A relative trust is t : ∆(n).

Given n : N, t : ∆(n), and predictors P1, . . . ,Pn : ∆+(X ), ...

...we get a new predictor t · P = t(1) ∗ P1 + · · ·+ t(n) ∗ Pn.

I.e., we multiply each prediction by how much we trust its predictor.
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Prediction markets in terms of Org

Fix X : Fin. We use the polynomial p := ∆+(X )yX to model a predictor.

It outputs a prediction P : ∆+(X ) and inputs an actual outcome x : X .

Then p⊗n outputs n predictions and receives n outcomes.

Consider the polynomial [p⊗n, p]. A position includes:...

...a function ∆+(X )n → ∆+(X ), and a function X → X n. ...

It’s a way to combine n predictions into one and distribute outcomes.

A direction of [p⊗n, p] consists of: n-many pred’ns and one outcome.

The category of maps p⊗n → p in Org is [p⊗n, p]-coalg.

Such a coalgebra consists of a set Tn and for each t : Tn,...

...a function ∆+(X )n → ∆+(X ), a function X → X n, and...

...given n predictions P1, . . . ,Pn and an outcome x , a new state.

There are many such coalgebras. The one for us is:

Take Tn := ∆n, the set of “relative trust levels” for n players.

Given t : Tn, use t · − : ∆+(X )n → ∆+(X ) and x 7→ (x , x , . . . , x).

Given pred’ns (Pi )i :n and outcome x , use Bayesian upd. to get new t ′.
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Dynamic organizational systems

So what are dynamic organizational systems?1

We’ve shown two examples: ANNs and prediction markets.

Technically, these are monoidal caty’s or operads enriched in Org.

A single procedure (e.g. gradient descent, Bayesian update)...

...which can be performed locally (per neuron, per predictor)...

...such that composites of this procedure again perform the procedure.

And why are they relevant to consciousness?

I’d like someone to define a dynamic sense-making system.

It organizes itself (like an ANN or pred’n market) through experience.

Q: what single procedure, performed locally (per sense-maker)...

...would make a composite of sense-makers again be a sense-maker?

I imagine each trying to account for the environment and its own fit.

I imagine the accounting language naturally becoming more systematic

1This is joint work with Brandon Shapiro (arXiv:2205.03906).
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Conclusion Summary

Summary

We ask how sense is made.

Sense of danger, direction, humor: how to track the “right” variables?

We make sense by settling accounts: everything fits into place.

We work to install sense-making systems into the deepest structures.

Mathematics is highly systematic (crystalized) accounting.

We use it to give very structured, repeatable, regulatable accounts.

The math guides our questioning and makes results communicable.

Category theory is the accounting system for interlocking structures.

Poly is a stunningly structured category, unreasonably effective in CS.

Dynamic organizational systems are ways for local entities to self-organize.

ANNs and pred’n markets self-organize based on training / experience.

Open question: define a DOS for sense-making?

The math guides questioning about how we make sense.

Thanks! Comments and questions welcome...
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