Polynomials and the dynamics of data

David I. Spivak

TOPOS

INSTITUTE

Seminario de categorias UNAM
2021 February 17

Outline

Introduction
m Personal history
m Plan

0/33

My personal history with math

I've always believed | could understand self, life, and world with math.

m We generally share experience and knowledge in “natural language”.
m Is any of it inherently precluded from mathematical expression?

When | learned CT, | thought “this is where | can say it all.”

m It's a sublanguage of math that can talk about math.
m It's clean and principled and structural and expressive.

So | got to work trying to understand self, life, and world.

1/33

My personal history with ACT

What can we say about self, life, and world?

m | first assumed everything is information and communication.
m Pretend our minds are information-storage devices.
m How do we communicate with each other and with reality?
m Understand everything in terms of databases and data migration!

m (Categories, set-valued functors, parametric right adjoints.)

m But interacting processes didn't seem to fit nicely.

m So then | assumed everything is interacting dynamical systems.
m It's machines sending each other information, all the way down.

m But should they really be wired the same way forever?
2/33

My personal history with Poly

Then one day | met Poly and fell in love.

m It captures dynamical systems and “rewiring diagrams” .
m As a category it's exceptionally well-behaved.

The dynamics seemed to really be all about comonoids in Poly.

m Joachim Kock pointed me to R. Garner; | found his HoTTEST talk.
m Garner explained Ahman-Uustalu’s result: “comonoids = categories”
m Garner also explained that bimodules = parametric right adjoints.

Suddenly everything I'd been working on for 13 years came together.

m | was overwhelmed by Poly's elegance and capacity for application.
m It is extremely computational and hands-on...
m ...while displaying excellent formal properties.

3/33

Plan for today

Today's plan:
m Recall some basics of Poly;
m Show how Poly models dynamical systems and databases;
m Discuss some open questions and speculations; and
m Conclude with a brief summary.

4/33

Outline

Theory
m Poly as a category
m Comonoids in Poly
m The framed bicategory P

4/33

Poly as a category

Poly for experts

What I'll call the category Poly has many names.
m The free completely distributive category on one object;
m The free coproduct completion of Set®P;
m The full subcategory of [Set, Set| spanned by functors that preserve
connected limits;
m The full subcategory of [Set, Set| spanned by coproducts of repr'bles;
m The category of typed sets and colax maps between them.

m Objects: pairs (S, 7), where S € Set and 7: S — Set.

m Morphisms (S,7) 2 (S8',7): pairs (¢1,¢"), where

S L s’

ot
\ /
T -

Set

But let’'s make this easier.
5/33

Poly as a category

What is a polynomial?

Algebraic Bundle Corolla forest

PO HNPIED B N A

(v o oo oo

Interpretations:

m Each corolla in p is a position; its leaves are directions.
m Each corolla in p is a decision; its leaves are the options.

6/33

Poly as a category

What is a morphism of polynomials?

Let p:=y3 +2y and g :=y* + 9%+ 2

Vi,

A morphism p 2, g delegates each p-decision to a g-decision, passing
back options:

Lo

SR /AN V1

1 3
Example: how to think of a map z% + »® — »>2.

7/33

Poly as a category

The category of polynomials

Easiest description: Poly = “sums of representables functors Set — Set" .
m For any set S, let y° := Set(S, —), the functor represented by S.
m Def: a polynomial is a sum p = Z,-e,yp[i] of representable functors.
m Def: a morphism of polynomials is a natural transformation.
[

In Poly, + is coproduct and X is product.

8/33

Poly as a category

Notation

We said that a polynomial is a sum of representable functors
p EE:Z/PUL
iel
But note that / = p(1). So we can write

p j{: ylﬂH.

iep(1)

9/33

Poly as a category

Composition monoidal structure (Poly, y, <)

The composite of two polynomial functors is again polynomial.

m Let's denote the composite of p and g by p<gq.

m Example: if p:=y%, g:=y+1, then pag=y?>+2y+1.

m This is a monoidal structure, but not symmetric. (q<p = y? +1)
m The identity functor y is the unit: p<y = p = y<p.

Why the we weird symbol < rather than o?

m We want to reserve o for morphism composition.
m The notation p < g represents trees with p under q.

10/33

Poly as a category

Composition given by stacking trees

Suppose p = y?> +y and g = y3 + 1.

Draw the composite p < g by stacking g-trees on top of p-trees:

p<q

VooV NV NV

You can also read it as g feeding into p, which is how composition works.

11/33

Comonoids in Poly

Comonoids in (Poly, y, <)

In any monoidal category (171, /,®), one can consider comonoids.
m A comonoid is a triple (m, €, 0) satisfying certain rules, where
m m € 11l is an object, the carrier,
m ¢: m— [is a map, the counit, and
B 6 m— m® mis a map, the comultiplication.
In (Poly, 7, <), comonoids are exactly categories!®
m If C is a category, the corresponding comonoid has carrier

= 30

icOb(C)

where ¢[i] is the set of morphisms in C that emanate from /.
B The counit €: ¢ — y assigns to each object an identity.
m The comult §: ¢ — ¢ < ¢ assigns codomains and composites.

!Ahman-Uustalu. See my talk, https://www.youtube.com/watch?v=2mWnrgPIrIA
12/33

Comonoids in Poly

Comonoid maps are “cofunctors”

In Poly, comonoids are categories, but their morphisms aren't functors.
m A comonoid morphism ¢: C -+ @ is called a cofunctor.
m It includes a Poly map on carriers. For each object i € ¢(1), we get:
m an object j == ¢1(i) € 9(1) and
m for each emanating f € 0[j], an emanating cp?(f) € [i].
Example: what is a cofunctor C % yN ?
m It is trivial on objects. On morphisms...
m ..it assigns an emanating morphism (1) to each object i € ¢(1).

i
“That’s not what you do with a category!”

m Cofunctors are kinda weird right? A whole new world to explore.
m A cofunctor C - y" is like a vector field on the category.
m This hints at applications, which are coming soon.

13/33

The framed bicategory P

Bicomodules in (Poly, y, <)

Given comonoids C, D, a (C,D)-bicomodule is another kind of map.

m It's a polynomial m, equipped with two maps
cdm<+— m— m<«0

each cohering naturally with the comonoid structure ¢, 4.
m | denote this (C,D)-bicomodule m like so:

m

cH2q D or C<2a D

B The <'s at the ends help me remember the how the maps go.
m Maybe it looks like it's going the wrong way, but hold on.

14 /33

Bicomodules are parametric right adjoints

Garner explained2 that bicomodules m € oModg, which we've denoted
C<"< D
can be identified with parametric right adjoint functors (prafunctors)
D-Set s C-Set.
m From this perspective the arrow points in the expected direction.
m Check: oModj = C-Set.

Prafunctors ¢ <—— @ generalize profunctors C — @:

m A profunctor C — @ is a functor C — (-Set)°P
m A prafunctor C <— D is a functor C — Coco((D-Set)°P)...
m ...where Coco is the free coproduct completion.

I'll explain how to think about it concretely when we get to applications.

2Garner's HOTTEST video, https://www.youtube . com/watch?v=tW6HYnqn6el
15/33

https://www.youtube.com/watch?v=tW6HYnqn6eI

The framed bicategory P

Poly comonoids, cofunctors, and bicomodules form a framed bicategory P.

m It's got a ton of structure, e.g. two monoidal structures, +, ®.
m Despite the last slide, it's actually not that hard to think about.

Here are some facts about ¢Modg, for categories C,D.

m »Mody = D-Set, copresheaves on D).
= 1Mod; = Coco((D-Set)°P).
m cMody = Cat(G,lMod@).

16 /33

Outline

Applications
m Interacting Moore machines
m Mode-dependence
m Databases

16/33

Interacting Moore machines

Moore machines

Definition
Given sets A, B, an (A, B)-Moore machine consists of:
m aset S, elements of which are called states,
® a function r: S — B, called readout, and al °
m a function u: S x A — S, called update.
It is initialized if it is equipped also with
m an element sg € S, called the initial state.

We refer to A as the input set, B as the output set of the Moore machine.

v

Dynamics: an (A, B)-Moore machine (S,r, u,sp) is a “stream transducer”:

m Given a list/stream [ag, a1, ...] of A's...
m let spy1 = u(sp, an) and b, == r(sp).
m We thus have obtained a list/stream [bg, b1, ...] of B’s.

17/33

Moore machines as maps in Poly

We can understand Moore machines “T:}# in terms of polynomials.

® An uninitialized Moore machiner: S > Band u: SxA— S is:
m A map of polynomials Sy° — By”.
m (is the readout and ¢ is the update.
m Add initialization by giving a map y — Sy°.
A p-dynamical system allows different input-sets at different positions.
m For arbitrary p € Poly we can interpret a map ¢: Sy° — p as:
® a readout: every state s € S gets a position i == ¢1(s) € p(1)
m an update: for every direction d € pli], a next state ©i(d) € S.
m Again, add initialization by giving a map y — Sy°.
Even more general: Sy® — C for any category C.
m For example, a map Sy° — p can be identified with a cofunctor...

m ... Sy° =+ ¢,,, where ¢, is the cofree comonoid on p.

18/33

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

Each box represents a monomial, e.g. p3 = Cy”*E € Poly.
m The whole interaction, p; sending outputs to p> and p3, etc....
m ... is captured by a map of polynomials ¢: p; ® --- ® ps — q. 3
m Given the positions (outputs) of each p;, we get an output of q...
m ... and when given an input of g, each p; gets an input.

3Here p ® p’ just multiplies positions and directions,

p@p = Z yp[flx;a’[f'lo
(i,i")ep(1)xp' (1)

19/33

Mode-dependence

More general interaction

Supplier 1 Supplier 1
Supplier 2 Supplier 2

The whole picture above represents one morphism in Poly.
m Let's suppose the company chooses who it wires to; this is its mode.
m Then both suppliers have interface Wy for W € Set.
m Company interface is 2y": two modes, each of which is W-input.
m The outer box is just y, i.e. a closed system.
So the picture represents a map Wy @ Wy ® 2y — y.
m That's a map 2W?y"W — 4.
m Equivalently, it's a function 2W?2 — W. Take it to be evaluation.
m In other words, the company’s choice determines which w € W it
receives.

Change
supplier!

20/33

Mode-dependence

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T.

m Discrete: N, reversible: Z, real-time: R.

m If T is a monoid and S is a set, a T-action on S is equivalently...
B ... amap S x T — § satisfying two laws, which is equivalently...
]

. a cofunctor Sy° — y T, as in our general definition above.

21/33

Categorical databases

One view on databases is that they're basically just copresheaves.

Employee Worksln Department
C = Mngr C ° ¢ ? °
‘_ Admin

Department.Admin.WorksIn = idpepartment

A functor /: C — Set (i.e. C <1L<1 0) can be represented as follows:

Employee Il Worksln Mngr Department || Admin
bLue ToREEE
T**** bLue orca P9 Q

orca bLue

orca

But where's the data? What are the employees names, etc.?
More realistically, data should include attributes and look like this:

Employee || FName | Worksin | Mngr Department || DName Secr
Alan P9 M bLue Sales T****
T**** Dani bLue orca
orca Sara bLue orca

m Assign a copresheaf T: Ob(C) — Set, e.g. T(Employee) = String.
m Using the canonical cofunctor C - Ob(C), attributes are given by

Q.
2233

Data migration

The framed bicategory structure of P is very useful in databases.

m We hinted at this in the last slide, adding attributes via a cofunctor.
m But so-called data migration functors are precisely prafunctors.

A prafunctor C <P 9 Din c¢Mody can be understood as follows.
m First, it's a functor C — {Modg, so what's that?
m We said it's a formal coproduct of formal limits in @.
m A formal limit in @ is called a conjunctive query on @.

m So a prafunctor 1 24 @ is a disjoint union of conjunctive queries.
Let's call @ a duc-query on @.

City in State in County>
o — [‘— [J

Example: if © = < , a duc-query might be...

(City X stateCity) + (CityXstateCounty) + (CountyXstateCounty)

A general bimodule P € oMod is a C-indexed duc-query on .
23/33

Outline

A Speculations and questions
m Aggregation?
m Metaphysical questions

23/33

Database aggregation

One of the most important uses of databases is aggregation.

m Setup: every employee is paid a salary and works in a department.
m Problem: assign each department the sum of its employees salaries.
m This is aggregation: not row-by-row; instead “rolling up a table".

| don’t know of a nice ACT story for this anywhere.

m Poly loves databases and data migration.

m It's good at dynamics, e.g. “doing something” over and over.

m Isn't there some natural way to do aggregation?

m We'd start with a commutative monoid in the types; then what?

This is probably my current nomination for “#1 problem in ACT".

m It's a crucial step in understanding the nature of summarizing.
® In turn, summarizing is a huge metaphysical interest of mine.

24/33

Metaphysical questions

A Poly-oriented view on metaphysics

I'll explain aspects of my current metaphysics using Poly.

m One's metaphysics is how they understand the fundamental principles.
m How does time work? What's up with identity? What is life?
m We can point at Poly while considering some of these things.

The following is just a play of forms, a submission | make for your review.

m Don't take this as a presentation of fact.
m Feel free to let me know what you think later.

First a little more math: the cofree comonoid.

25/33

Metaphysical questions

The cofree comonoid ¢,

Comonoids in Poly are categories, so ¢, is a category; which one?
m It's actually free on a graph, but the graph is very interesting.
m The vertex-set c,(1) of the graph is the set of p-trees.
m A p-tree is a possibly infinite tree t, where each node...
m ...is labeled by a position i € p(1) and has p[i]-many branches.
m For each vertex t, the set ¢,[t] of arrows emanating from t is...
m ...the set of nodes n in tree t.
m Identity arrow = root node; codomain of n is the subtree at n.
Example object (tree) t € c,,, where p 2 22 + 1:

Ty Iv T,

VVV.,VV

\/\/\/ v\/’
‘\\\\'////”

26 /33

Metaphysical questions

Intuition from ¢,

—

T 17 I,
VYV, VYV
AVAR VARV
>
Suppose you (or the world) can be in p(1)-many positions, and...
...for each i € p(1), there are p[i]-many ways things might happen.

<

m Your character is how you respond in each such case.

m The character above always responds to left by turning green, etc.
The category of all “p-inhabiting characters” is ¢,-Set, a topos.

m It's also the category of all dynamical systems with interface p.

m One can describe characters using the internal language of ¢,-Set.

m We'll use an informal version to talk about experience.

27/33

Metaphysical questions

What was, what’s happening, and our character

Here are some assertions for your review:
m The past is irrevocably gone; it's always now.
m What we have of the past is what is left in the present.
m This includes the layout of your surroundings.
m It also includes the layout of your mind (memory).
m The past—what was—is fossilized in the present layout.
m We're continually consolidating experience; now, now, now.
® Imagine: all that remains of the past is the present position i € ¢,(1).
m What's happening now is the present direction d € p[i].
m Imagine: our job is to compress the past into the present.
m We try to remember something, we write it down, etc.
m Compression because we encode both i and d in cod(d).
m Our character X: ¢, — Set is our compression scheme.
m It's the type of responses we can have as things happen to us.

28/33

Metaphysical questions

The lessons of history?

Imperative: compress the lessons of history to actualize ourselves.
m DNA compresses the lessons of who died, who survived, who thrived.
m History books, math books, culture: compress the lessons of history.
m But what's a lesson? What's worth compressing?
m Two senses of appreciation:
m We pass on what we appreciate.
m Appreciation of an asset is its growth.
How do you make math out of any of this?
m Polani’s notion of Empowerment?
m Channel capacity between position now and direction in future.
m This may give a concrete notion of “lesson of history”.

29/33

Metaphysical questions

Factoring

Again for intuition only, imagine all of reality is embodied in p.
= Imagine you are a tensor factor, p := p; @ p/, ...
m ...where Ego = me = p;, and Alter = environmnent=p’.
m Perhaps such factoring is a strategy for discerning the character of p?
m A map p; ® p’ — y can be understood via standard cybernetics.
m | present an unfolding situation for the environment, and...
m ... the environment produces an unfolding situation for me.
m We seem to pass constraints between characters in p; and p’.
m But all of it is dictated by the character inhabiting p.

Is this sort of mereological breakdown actually useful? If so, what for?

30/33

Metaphysical questions

Moving forward

The Al transition:

® Humans try to mimic intelligence they see in animals and people.
m Example: “Computers” were originally people.
m Turing explicitly designed machines to mimic their behavior.
m We capture our understanding of life/intelligence in artifacts.
m I'll call these artifacts “Al".

m Al can be run continuously at very fast rates.

m This has led to increasing complexity, already visible; more to come!

Mathematicians can enter the fray.
m If we say something in constructive math, technology can be formed.
m If what we say is elegant, the tech won't be ad-hoc.
m | prefer to be alongside elegant Al rather than ad-hoc Al.
m Mathematicians can join our historical moment and lead.

Poly is my entry point; you join our historical moment as you see fit.
31/33

Outline

H Conclusion
m Summary

31/33

Workshop on polynomial functors in March

Joachim Kock and | are organizing a Poly workshop.*
m Dates: March 15 - 19

m Speakers:
Thorsten Altenkirch Steve Awodey
Michael Batanin Bryce Clarke
Marcelo Fiore Richard Garner
David Gepner Helle Hvid Hansen
Rune Haugseng Bart Jacobs
André Joyal Fredrik Nordvall-Forsberg
Kristina Sojakova David Spivak
Ross Street Tarmo Uustalu

*https://topos.site/p-func-2021-workshop/
32/33

https://topos.site/p-func-2021-workshop/

Summary

Poly is a category of remarkable abundance.
m It's completely combinatorial.
m Calculations are concrete.
m Much is already familiar, e.g. (y + 1) = y? + 2y + 1.
m It's theoretically beautiful.
m Comonoids are categories.
m Coalgebras are copresheaves.
m It's got a wide scope of applications.
m Databases and data migration.
m Dynamical systems and cellular automata.

A single setting for pursuing real philosophical and technological progress.

Thanks! Questions and comments welcome.

33/33

	Introduction
	Personal history
	Plan

	Theory
	 as a category
	Comonoids in
	The framed bicategory P

	Applications
	Interacting Moore machines
	Mode-dependence
	Databases

	Speculations and questions
	Aggregation?
	Metaphysical questions

	Conclusion
	Summary

